Rahman Mohammad Z, Raziq Fazal, Zhang Huabin, Gascon Jorge
KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Angew Chem Int Ed Engl. 2023 Nov 27;62(48):e202305385. doi: 10.1002/anie.202305385. Epub 2023 Aug 17.
Transition metal oxides (TMOs) were one of the first photocatalysts used to produce hydrogen from water using solar energy. Despite the emergence of many other genres of photocatalysts over the years, TMO photocatalysts remain dominant due to their easy synthesis and unique physicochemical properties. Various strategies have been developed to enhance the photocatalytic activity of TMOs, but the solar-to-hydrogen (STH) conversion efficiency of TMO photocatalysts is still very low (<2 %), which is far below the targeted STH of 10 % for commercial viability. This article provides a comprehensive analysis of several widely used strategies, including oxygen defects control, doping, establishing interfacial junctions, and phase-facet-morphology engineering, that have been adopted to improve TMO photocatalysts. By critically evaluating these strategies and providing a roadmap for future research directions, this article serves as a valuable resource for researchers, students, and professionals seeking to develop efficient energy materials for green energy solutions.
过渡金属氧化物(TMOs)是最早用于利用太阳能从水中制取氢气的光催化剂之一。尽管多年来出现了许多其他类型的光催化剂,但TMO光催化剂因其易于合成和独特的物理化学性质而仍然占据主导地位。人们已经开发出各种策略来提高TMOs的光催化活性,但TMO光催化剂的太阳能到氢能(STH)转换效率仍然非常低(<2%),这远远低于实现商业可行性所需的10%的目标STH。本文对几种广泛使用的策略进行了全面分析,包括氧缺陷控制、掺杂、建立界面结以及相-面-形貌工程,这些策略已被用于改进TMO光催化剂。通过对这些策略进行批判性评估并为未来的研究方向提供路线图,本文为寻求开发用于绿色能源解决方案的高效能源材料的研究人员、学生和专业人士提供了宝贵的资源。