Suppr超能文献

重新审视单细胞蛋白质组学中缺失值这一棘手问题。

Revisiting the Thorny Issue of Missing Values in Single-Cell Proteomics.

机构信息

Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, 1200 Brussels, Belgium.

出版信息

J Proteome Res. 2023 Sep 1;22(9):2775-2784. doi: 10.1021/acs.jproteome.3c00227. Epub 2023 Aug 2.

Abstract

Missing values are a notable challenge when analyzing mass spectrometry-based proteomics data. While the field is still actively debating the best practices, the challenge increased with the emergence of mass spectrometry-based single-cell proteomics and the dramatic increase in missing values. A popular approach to deal with missing values is to perform imputation. Imputation has several drawbacks for which alternatives exist, but currently, imputation is still a practical solution widely adopted in single-cell proteomics data analysis. This perspective discusses the advantages and drawbacks of imputation. We also highlight 5 main challenges linked to missing value management in single-cell proteomics. Future developments should aim to solve these challenges, whether it is through imputation or data modeling. The perspective concludes with recommendations for reporting missing values, for reporting methods that deal with missing values, and for proper encoding of missing values.

摘要

当分析基于质谱的蛋白质组学数据时,缺失值是一个值得注意的挑战。虽然该领域仍在积极讨论最佳实践,但随着基于质谱的单细胞蛋白质组学的出现以及缺失值的急剧增加,这一挑战变得更加严峻。处理缺失值的一种流行方法是进行插补。插补存在一些缺点,也存在替代方法,但目前,插补仍然是单细胞蛋白质组学数据分析中广泛采用的实用解决方案。本文从多个角度讨论了插补的优缺点。我们还强调了与单细胞蛋白质组学中缺失值管理相关的 5 个主要挑战。未来的发展应该旨在解决这些挑战,无论是通过插补还是数据建模。本文最后对缺失值的报告、处理缺失值的方法的报告以及缺失值的正确编码提出了建议。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验