Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, 1200 Brussels, Belgium.
J Proteome Res. 2023 Sep 1;22(9):2775-2784. doi: 10.1021/acs.jproteome.3c00227. Epub 2023 Aug 2.
Missing values are a notable challenge when analyzing mass spectrometry-based proteomics data. While the field is still actively debating the best practices, the challenge increased with the emergence of mass spectrometry-based single-cell proteomics and the dramatic increase in missing values. A popular approach to deal with missing values is to perform imputation. Imputation has several drawbacks for which alternatives exist, but currently, imputation is still a practical solution widely adopted in single-cell proteomics data analysis. This perspective discusses the advantages and drawbacks of imputation. We also highlight 5 main challenges linked to missing value management in single-cell proteomics. Future developments should aim to solve these challenges, whether it is through imputation or data modeling. The perspective concludes with recommendations for reporting missing values, for reporting methods that deal with missing values, and for proper encoding of missing values.
当分析基于质谱的蛋白质组学数据时,缺失值是一个值得注意的挑战。虽然该领域仍在积极讨论最佳实践,但随着基于质谱的单细胞蛋白质组学的出现以及缺失值的急剧增加,这一挑战变得更加严峻。处理缺失值的一种流行方法是进行插补。插补存在一些缺点,也存在替代方法,但目前,插补仍然是单细胞蛋白质组学数据分析中广泛采用的实用解决方案。本文从多个角度讨论了插补的优缺点。我们还强调了与单细胞蛋白质组学中缺失值管理相关的 5 个主要挑战。未来的发展应该旨在解决这些挑战,无论是通过插补还是数据建模。本文最后对缺失值的报告、处理缺失值的方法的报告以及缺失值的正确编码提出了建议。