The University of Texas MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
, Houston, TX, USA.
Methods Mol Biol. 2023;2426:119-129. doi: 10.1007/978-1-0716-1967-4_6.
Missing values caused by the limit of detection or quantification (LOD/LOQ) were widely observed in mass spectrometry (MS)-based omics studies and could be recognized as missing not at random (MNAR). MNAR leads to biased statistical estimations and jeopardizes downstream analyses. Although a wide range of missing value imputation methods was developed for omics studies, a limited number of methods were designed appropriately for the situation of MNAR. To facilitate MS-based omics studies, we introduce GSimp, a Gibbs sampler-based missing value imputation approach, to deal with left-censor missing values in MS-proteomics datasets. In this book, we explain the MNAR and elucidate the usage of GSimp for MNAR in detail.
在基于质谱(MS)的组学研究中,广泛观察到由于检测或定量下限(LOD/LOQ)而导致的缺失值,这些缺失值可以被认为是缺失非随机的(MNAR)。MNAR 导致有偏的统计估计,并危及下游分析。尽管已经为组学研究开发了广泛的缺失值插补方法,但只有有限数量的方法被专门设计用于 MNAR 情况。为了方便基于 MS 的组学研究,我们引入了 GSimp,一种基于 Gibbs 抽样器的缺失值插补方法,用于处理 MS 蛋白质组学数据集中的左截断缺失值。在这本书中,我们详细解释了 MNAR,并阐明了 GSimp 在 MNAR 中的使用。