Department of Biomedical Engineering, Izmir Katip Çelebi University, Cigli 35620 Izmir, Turkey.
Department of Electrical and Electronics Engineering, Izmir University of Economics, Balcova 35330 Izmir, Turkey.
Int J Neural Syst. 2023 Sep;33(9):2350045. doi: 10.1142/S0129065723500454. Epub 2023 Aug 2.
The majority of psychogenic nonepileptic seizures (PNESs) are brought on by psychogenic causes, but because their symptoms resemble those of epilepsy, they are frequently misdiagnosed. Although EEG signals are normal in PNES cases, electroencephalography (EEG) recordings alone are not sufficient to identify the illness. Hence, accurate diagnosis and effective treatment depend on long-term video EEG data and a complete patient history. Video EEG setup, however, is more expensive than using standard EEG equipment. To distinguish PNES signals from conventional epileptic seizure (ES) signals, it is crucial to develop methods solely based on EEG recordings. The proposed study presents a technique utilizing short-term EEG data for the classification of inter-PNES, PNES, and ES segments using time-frequency methods such as the Continuous Wavelet transform (CWT), Short-Time Fourier transform (STFT), CWT-based synchrosqueezed transform (WSST), and STFT-based SST (FSST), which provide high-resolution time-frequency representations (TFRs). TFRs of EEG segments are utilized to generate 13 joint TF (J-TF)-based features, four gray-level co-occurrence matrix (GLCM)-based features, and 16 higher-order joint TF moment (HOJ-Mom)-based features. These features are then employed in the classification procedure. Both three-class (inter-PNES versus PNES versus ES: ACC: 80.9%, SEN: 81.8%, and PRE: 84.7%) and two-class (Inter-PNES versus PNES: ACC: 88.2%, SEN: 87.2%, and PRE: 86.1%; PNES versus ES: ACC: 98.5%, SEN: 99.3%, and PRE: 98.9%) classification algorithms performed well, according to the experimental results. The STFT and FSST strategies surpass the CWT and WSST strategies in terms of classification accuracy, sensitivity, and precision. Moreover, the J-TF-based feature sets often perform better than the other two.
大多数心因性非癫痫性发作(PNES)是由心因性原因引起的,但由于其症状与癫痫相似,因此经常被误诊。尽管 PNES 病例的 EEG 信号正常,但仅凭脑电图(EEG)记录不足以确定该疾病。因此,准确的诊断和有效的治疗依赖于长期的视频脑电图数据和完整的患者病史。然而,视频脑电图设置比使用标准脑电图设备更昂贵。为了将 PNES 信号与传统的癫痫发作(ES)信号区分开来,开发仅基于 EEG 记录的方法至关重要。拟议的研究提出了一种利用短时 EEG 数据的技术,使用时频方法(如连续小波变换(CWT)、短时傅里叶变换(STFT)、基于 CWT 的同步挤压变换(WSST)和基于 STFT 的 SST(FSST))对 PNES 段、PNES 段和 ES 段进行分类,这些方法提供了高分辨率的时频表示(TFR)。使用 EEG 段的 TFR 生成 13 个联合 TF(J-TF)基于特征、4 个灰度共生矩阵(GLCM)基于特征和 16 个高阶联合 TF 矩(HOJ-Mom)基于特征。然后在分类过程中使用这些特征。根据实验结果,三种分类(PNES 与 ES:ACC:80.9%,SEN:81.8%,PRE:84.7%;PNES 与 ES:ACC:88.2%,SEN:87.2%,PRE:86.1%)和两种分类(PNES 与 ES:ACC:88.2%,SEN:87.2%,PRE:86.1%;PNES 与 ES:ACC:98.5%,SEN:99.3%,PRE:98.9%)分类算法均表现良好。在分类准确性、敏感性和精度方面,STFT 和 FSST 策略优于 CWT 和 WSST 策略。此外,基于 J-TF 的特征集通常比其他两个表现更好。