School of Mechanical Engineering and Automation, Beihang University, Beijing 100091, People's Republic of China.
Institute of Bionic and Micro-Nano Systems, Beihang University, Beijing 100091, People's Republic of China.
Bioinspir Biomim. 2023 Aug 14;18(5). doi: 10.1088/1748-3190/acece9.
Many living organisms exhibit exceptional capabilities and have evolved effective strategies to synthesize impact-resistant and damage-tolerant structures. One such example can be observed in the rapid mandible strikes of, a species of trap-jaw ants from the ponerine subfamily. During trap-jaw strikes, the mandibles can achieve peak speeds of 35.42 m s, and the maximum acceleration can reach 71 729 g within an average duration of 0.18 ms. The extreme acceleration results in instantaneous mandible strike forces that can exceed 330 times the ant's body weight, withstanding thousands of impacts. A natural impact-resistant fibrous helicoidal structure is found in the mandibles of trap-jaw ants. This microstructure is characterized by periodic modulus oscillations that increase energy absorption and improve stress redistribution, offering added protection against damage from impact loading. A carbon fiber reinforced helicoidal composite is fabricated based on the microstructure of the trap-jaw ant's mandibles. The results show that the helicoidal composite with a 12° helical-fiber exhibits higher residual strength, making it more capable of withstanding strong collisions. The catastrophic propagation of damage along the thickness direction is prevented by in-plane spreading and redirection of cracks. This research provides useful references for fabricating bionic impact-resistant composites.
许多生物表现出非凡的能力,并进化出有效的策略来合成抗冲击和耐损伤的结构。例如,可以在捕蝇树蚁的快速下颚打击中观察到这种情况,这是一种来自兵蚁亚科的陷阱颚蚂蚁。在陷阱颚打击中,下颚可以达到 35.42 米每秒的峰值速度,最大加速度可以在平均 0.18 毫秒内达到 71729 克。这种极端的加速度导致瞬时下颚打击力可以超过蚂蚁体重的 330 倍,能够承受数千次冲击。在捕蝇树蚁的下颚中发现了一种天然的抗冲击纤维螺旋结构。这种微观结构的特点是周期性的模量振荡,增加了能量吸收并改善了应力重新分布,为抵御冲击载荷造成的损伤提供了额外的保护。根据捕蝇树蚁下颚的微观结构,制造了碳纤维增强螺旋复合材料。结果表明,具有 12°螺旋纤维的螺旋复合材料具有更高的残余强度,使其更能承受强烈的碰撞。通过在平面内扩展和重新定向裂纹,可以防止沿厚度方向灾难性地传播损伤。这项研究为制造仿生抗冲击复合材料提供了有用的参考。