Suppr超能文献

用于二氧化碳捕获与转化的金属酞菁共价有机框架的混合金属离子热合成

Mixed-metal Ionothermal Synthesis of Metallophthalocyanine Covalent Organic Frameworks for CO Capture and Conversion.

作者信息

Seob Song Kyung, Fritz Patrick W, Abbott Daniel F, Nga Poon Lok, Caridade Cristiano M, Gándara Felipe, Mougel Victor, Coskun Ali

机构信息

Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland.

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland.

出版信息

Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202309775. doi: 10.1002/anie.202309775. Epub 2023 Aug 11.

Abstract

Phthalocyanines (PCs) are intriguing building blocks owing to their stability, physicochemical and catalytic properties. Although PC-based polymers have been reported before, many suffer from relatively low stability, crystallinity, and low surface areas. Utilizing a mixed-metal salt ionothermal approach, we report the synthesis of a series of metallophthalocyanine-based covalent organic frameworks (COFs) starting from 1,2,4,5-tetracyanobenzene and 2,3,6,7-tetracyanoanthracene to form the corresponding COFs named M-pPPCs and M-anPPCs, respectively. The obtained COFs followed the Irving-Williams series in their metal contents, surface areas, and pore volume and featured excellent CO uptake capacities up to 7.6 mmol g at 273 K, 1.1 bar. We also investigated the growth of the Co-pPPC and Co-anPPC on a highly conductive carbon nanofiber and demonstrated their high catalytic activity in the electrochemical CO reduction, which showed Faradaic efficiencies towards CO up to 74 % at -0.64 V vs. RHE.

摘要

酞菁(PCs)因其稳定性、物理化学性质和催化性能而成为引人关注的结构单元。尽管此前已有基于PC的聚合物的报道,但许多聚合物存在稳定性相对较低、结晶度低和表面积小的问题。利用混合金属盐离子热法,我们报道了一系列基于金属酞菁的共价有机框架(COFs)的合成,该合成从1,2,4,5-四氰基苯和2,3,6,7-四氰基蒽开始,分别形成相应的名为M-pPPCs和M-anPPCs的COFs。所获得的COFs在金属含量、表面积和孔体积方面遵循欧文-威廉姆斯序列,在273 K、1.1 bar条件下具有高达7.6 mmol g的出色CO吸附容量。我们还研究了Co-pPPC和Co-anPPC在高导电性碳纳米纤维上的生长,并证明了它们在电化学CO还原中的高催化活性,在相对于可逆氢电极(RHE)为-0.64 V时,对CO的法拉第效率高达74%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验