Applied Functional Polymers (AFUPO), University of Bayreuth, 95440, Bayreuth, Germany.
Physical Chemistry I, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
Macromol Rapid Commun. 2024 Jan;45(1):e2300396. doi: 10.1002/marc.202300396. Epub 2023 Aug 15.
Polythiophene-based conjugated polyelectrolytes (CPE) are attracting increasing attention as sensor or interface materials in chemistry and biology. While cationic polythiophenes are better understood, limited structural information is available on their anionic counterparts. Limited access to well-defined polymers has made the study of structure-property relationships difficult and clear correlations have remained elusive. By combining controlled Kumada catalyst transfer polymerization with a polymer-analog substitution, regioregular and narrowly distributed poly(6-(thiophen-3-yl)hexane-1-sulfonate)s (PTHS) with tailored chain length are prepared. Analysis of their aqueous solution structures by small-angle neutron scattering (SANS) revealed a cylindrical conformation for all polymers tested, with a length close to the contour length of the polymer chains, while the estimated radii remain too small (<1.5 nm) for extensive π-stacking of the chains. The latter is particularly interesting as the longest polymer exhibits a concentration-independent structured absorption typical of crystalline polythiophenes. Increasing the ionic strength of the solution diminishes these features as the Coulomb repulsion between the charged repeat units is shielded, allowing the polymer to adopt a more coiled conformation. The extended π-conjugation, therefore, appears to be a key parameter for these unique optical features, which are not present in the corresponding cationic polythiophenes.
基于聚噻吩的共轭聚电解质(CPE)作为化学和生物学中的传感器或界面材料越来越受到关注。虽然阳离子聚噻吩的理解更为深入,但关于其阴离子对应物的结构信息有限。由于难以获得结构明确的聚合物,因此研究结构-性能关系变得困难,而且明确的相关性仍然难以捉摸。通过结合可控 Kumada 催化剂转移聚合和聚合物类似物取代,制备了具有定制链长的规正和窄分布的聚(6-(噻吩-3-基)己烷-1-磺酸盐)(PTHS)。通过小角中子散射(SANS)对其水溶液结构进行分析,发现所有测试的聚合物均呈现圆柱构象,长度接近聚合物链的轮廓长度,而估计的半径仍然太小(<1.5nm),无法实现链的广泛π堆积。后者特别有趣,因为最长的聚合物表现出与结晶聚噻吩典型的浓度无关的结构化吸收。随着溶液中离子强度的增加,这些特征会减弱,因为带电荷的重复单元之间的库仑斥力被屏蔽,从而允许聚合物采用更卷曲的构象。因此,扩展的π共轭似乎是这些独特光学特性的关键参数,而这些特性在相应的阳离子聚噻吩中不存在。