Suppr超能文献

开发一种用于癌症亚型分类问题的标签传播方法。

Developing a label propagation approach for cancer subtype classification problem.

作者信息

Güner Pınar, Bakir-Gungor Burcu, Coşkun Mustafa

机构信息

Department of Computer Engineering, Faculty of Engineering, Abdullah Gül University, Kayseri, Turkey.

出版信息

Turk J Biol. 2021 Dec 20;46(2):145-161. doi: 10.3906/biy-2108-83. eCollection 2022.

Abstract

Cancer is a disease in which abnormal cells grow uncontrollably and invade other tissues. Several types of cancer have various subtypes with different clinical and biological implications. Based on these differences, treatment methods need to be customized. The identification of distinct cancer subtypes is an important problem in bioinformatics, since it can guide future precision medicine applications. In order to design targeted treatments, bioinformatics methods attempt to discover common molecular pathology of different cancer subtypes. Along this line, several computational methods have been proposed to discover cancer subtypes or to stratify cancer into informative subtypes. However, existing works do not consider the sparseness of data (genes having low degrees) and result in an ill-conditioned solution. To address this shortcoming, in this paper, we propose an alternative unsupervised method to stratify cancer patients into subtypes using applied numerical algebra techniques. More specifically, we applied a label propagation-based approach to stratify somatic mutation profiles of colon, head and neck, uterine, bladder, and breast tumors. We evaluated the performance of our method by comparing it to the baseline methods. Extensive experiments demonstrate that our approach highly renders tumor classification tasks by largely outperforming the state-of-the-art unsupervised and supervised approaches.

摘要

癌症是一种异常细胞不受控制地生长并侵袭其他组织的疾病。几种类型的癌症有不同的亚型,具有不同的临床和生物学意义。基于这些差异,治疗方法需要量身定制。识别不同的癌症亚型是生物信息学中的一个重要问题,因为它可以指导未来的精准医学应用。为了设计靶向治疗,生物信息学方法试图发现不同癌症亚型的共同分子病理学特征。沿着这条线,已经提出了几种计算方法来发现癌症亚型或将癌症分层为信息丰富的亚型。然而,现有工作没有考虑数据的稀疏性(低度数的基因),并导致病态解。为了解决这个缺点,在本文中,我们提出了一种替代的无监督方法,使用应用数值代数技术将癌症患者分层为亚型。更具体地说,我们应用了一种基于标签传播的方法来对结肠、头颈、子宫、膀胱和乳腺肿瘤的体细胞突变谱进行分层。我们通过将我们的方法与基线方法进行比较来评估其性能。广泛的实验表明,我们的方法通过大大优于最先进的无监督和监督方法,高度完成了肿瘤分类任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87c4/10393106/5263fcf79788/turkjbiol-46-2-145f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验