Suppr超能文献

在中国血液透析患者全因死亡率和心血管死亡率预测模型的开发和验证:一项回顾性队列研究。

Development and Validation of Prediction Models for All-Cause Mortality and Cardiovascular Mortality in Patients on Hemodialysis: A Retrospective Cohort Study in China.

机构信息

The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.

Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People's Republic of China.

出版信息

Clin Interv Aging. 2023 Jul 28;18:1175-1190. doi: 10.2147/CIA.S416421. eCollection 2023.

Abstract

PURPOSE

This study aimed to develop two predictive nomograms for the assessment of long-term survival status in hemodialysis (HD) patients by examining the prognostic factors for all-cause mortality and cardiovascular (CVD) event mortality.

PATIENTS AND METHODS

A total of 551 HD patients with an average age of over 60 were included in this study. The patients' medical records were collected from our hospital and randomly allocated to two cohorts: the training cohort (n=385) and the validation cohort (n=166). We employed multivariate Cox assessments and fine-gray proportional hazards models to explore the predictive factors for both all-cause mortality and cardiovascular event mortality risk in HD patients. Two nomograms were established based on predictive factors to forecast patients' likelihood of survival for 3, 5, and 8 years. The performance of both models was evaluated using the area under the curve (AUC), calibration plots, and decision curve analysis.

RESULTS

The nomogram for all-cause mortality prediction included seven factors: age ≥ 60, sex (male), history of diabetes and coronary artery disease, diastolic blood pressure, total triglycerides (TG), and total cholesterol (TC). The nomogram for cardiovascular event mortality prediction included three factors: history of diabetes and coronary artery disease, and total cholesterol (TC). Both models demonstrated good discrimination, with AUC values of 0.716, 0.722 and 0.725 for all-cause mortality at 3, 5, and 8 years, respectively, and 0.702, 0.695, and 0.677 for cardiovascular event mortality, respectively. The calibration plots indicated a good agreement between the predictions and the decision curve analysis demonstrated a favorable clinical utility of the nomograms.

CONCLUSION

Our nomograms were well-calibrated and exhibited significant estimation efficiency, providing a valuable predictive tool to forecast prognosis in HD patients.

摘要

目的

本研究旨在通过检查全因死亡率和心血管(CVD)事件死亡率的预后因素,为血液透析(HD)患者的长期生存状况评估开发两个预测列线图。

方法

本研究共纳入 551 名平均年龄超过 60 岁的 HD 患者。患者的病历从我院采集,并随机分配到两个队列:训练队列(n=385)和验证队列(n=166)。我们采用多变量 Cox 评估和精细灰色比例风险模型来探讨 HD 患者全因死亡率和心血管事件死亡率风险的预测因素。根据预测因素建立两个列线图,以预测患者 3、5 和 8 年的生存可能性。使用曲线下面积(AUC)、校准图和决策曲线分析来评估两种模型的性能。

结果

全因死亡率预测的列线图包括七个因素:年龄≥60 岁、性别(男性)、糖尿病和冠状动脉疾病史、舒张压、总甘油三酯(TG)和总胆固醇(TC)。心血管事件死亡率预测的列线图包括三个因素:糖尿病和冠状动脉疾病史和总胆固醇(TC)。两种模型均表现出良好的区分度,全因死亡率的 AUC 值分别为 3 年、5 年和 8 年的 0.716、0.722 和 0.725,心血管事件死亡率的 AUC 值分别为 0.702、0.695 和 0.677。校准图表明预测与实际情况之间存在良好的一致性,决策曲线分析表明列线图具有良好的临床实用性。

结论

我们的列线图校准良好,表现出显著的估计效率,为预测 HD 患者的预后提供了有价值的预测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1d9/10392814/5efbe95c626c/CIA-18-1175-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验