CIQUP, IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
Department of Chemical Engineering and (d)Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel.
J Colloid Interface Sci. 2023 Nov 15;650(Pt B):2024-2034. doi: 10.1016/j.jcis.2023.07.129. Epub 2023 Jul 21.
Spatially and temporally localized delivery is a promising strategy to circumvent adverse effects of traditional drug therapy such as drug toxicity and prolonged treatments. Stimuli-responsive colloidal nanocarriers can be crucial to attain such goals. Here, we develop a delivery system based on dual light and pH responsive vesicles having a cationic bis-quat gemini surfactant, 12-2-12, and a negatively charged amphiphilic chalcone, CSCh. The premise is to exploit the chalcone/flavylium interconversion to elicit a morphological change of the vesicles leading to the controlled release of an encapsulated drug. First, the phase behavior of the catanionic system is studied and the desirable composition yielding stable unilamellar vesicles identified and selected for further studies. The solutions containing vesicles (D ≈ 200 nm, ζ-potential ≈ 80 mV) are in-depth characterized by light microscopy, cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS) and surface tension measurements. Upon subjecting the vesicles to UV irradiation (λ = 365 nm) at near neutral pH (≈ 6.0), no morphological effects are observed, yet when irradiation is coupled with pH = 3.0, the majority of the vesicles are disrupted into bilayer fragments. The anticancer drug doxorubicin (DOX) is successfully entrapped in the non-irradiated vesicles, yielding an encapsulation efficiency of ≈ 25% and a loading capacity of ≈ 3%. The release profile of the drug-loaded vesicles is then studied in vitro in four conditions: i) no stimuli (pH = 6.0); ii) irradiation, pH = 6.0; iii) no irradiation and adjusted pH = 3.0; iv) irradiation and adjusted pH = 3.0 Crucially, irradiation at pH = 3.0 leads to a sustained release of DOX to ca. 80% (within 4 h), whereas cases i) and ii) lead to only ≈ 25 % release and case iii) to 50% release but precipitation of the vesicles. Thus, our initial hypothesis is confirmed: we present a proof of concept delivery system where light and pH act as inputs of an AND logic gate mechanism for the controlled release of a relevant biomedical drug (output). This may prove useful if the irradiated nanocarriers meet acidified physiological environments such as tumors sites, endosomes or lysosomes.
时空定位给药是一种有前途的策略,可以规避传统药物治疗的副作用,如药物毒性和延长治疗时间。刺激响应胶体纳米载体对于实现这些目标至关重要。在这里,我们开发了一种基于具有阳离子双季铵盐Gemini 表面活性剂 12-2-12 和带负电荷的两性查尔酮 CSCh 的双光和 pH 响应囊泡的递药系统。前提是利用查尔酮/黄烷醇互变异构来引发囊泡的形态变化,从而实现包封药物的控制释放。首先,研究了两性离子体系的相行为,并确定和选择了产生稳定单层囊泡的理想组成用于进一步研究。含有囊泡的溶液(D ≈ 200nm,ζ-电位 ≈ 80mV)通过光显微镜、冷冻透射电子显微镜(cryo-TEM)、动态光散射(DLS)和表面张力测量进行了深入表征。当将囊泡暴露于近中性 pH(≈6.0)下的 UV 辐射(λ = 365nm)时,没有观察到形态变化,但当将辐射与 pH = 3.0 结合时,大多数囊泡破裂成双层碎片。阿霉素(DOX)抗癌药物成功地包封在未辐照的囊泡中,包封效率约为 25%,载药量约为 3%。然后,在四种条件下体外研究了载药囊泡的释放曲线:i)无刺激(pH = 6.0);ii)辐照,pH = 6.0;iii)无辐照且 pH 调整为 3.0;iv)辐照且 pH 调整为 3.0。至关重要的是,在 pH = 3.0 下辐照导致 DOX 的持续释放约 80%(在 4 小时内),而情况 i)和 ii)仅导致约 25%的释放和情况 iii)释放 50%但囊泡沉淀。因此,我们的初始假设得到了证实:我们提出了一个概念验证的递药系统,其中光和 pH 作为控制相关生物医学药物释放的与门逻辑门机制的输入(输出)。如果辐照纳米载体遇到酸化的生理环境,如肿瘤部位、内体或溶酶体,这可能很有用。