He Qinye, Ding Jie, Tsai Hsin-Jung, Liu Yuhang, Wei Min, Zhang Qiao, Wei Zhiming, Chen Zhaoyang, Huang Jian, Hung Sung-Fu, Yang Hongbin, Zhai Yueming
The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
J Colloid Interface Sci. 2023 Dec;651:18-26. doi: 10.1016/j.jcis.2023.07.168. Epub 2023 Jul 27.
Single-atom catalysts supported on semiconductors can serve as active sites for efficient oxygen reduction to hydrogen peroxide (HO). However, researchers have long been puzzled by the lack of guidance on optimizing the performance of single-atom photocatalysts. In this study, we propose a versatile strategy that utilizes carbon vacancies to regulate the electronic configuration of antimony (Sb) atoms on carbon nitrides (CN). This strategy has been found to significantly enhance the photocatalytic production of HO. The HO evolution rate of Sb single-atom on carbon vacancy-rich CN (designated as Sb/Cv-CN) is 5.369 mmol gh, which is 10.9 times higher than CN alone. By combining experimental characterizations and density functional theory simulations, we reveal the strong electronic interaction between Sb atoms and carbon vacancy-rich CN. This interaction is capable for maintaining the electron-rich state of Sb atoms, facilitating efficient electron transfer to pauling-type absorbed oxygen, and ultimately enhancing the formation of *OOH intermediates. This innovative defect-engineering approach can manipulate the electronic configuration of single-atom catalysts, providing a new avenue to boost the photocatalytic oxygen reduction reaction towards HO production.
负载在半导体上的单原子催化剂可作为将氧气高效还原为过氧化氢(HO)的活性位点。然而,长期以来,研究人员一直对缺乏优化单原子光催化剂性能的指导方法感到困惑。在本研究中,我们提出了一种通用策略,即利用碳空位来调节氮化碳(CN)上锑(Sb)原子的电子构型。已发现该策略可显著提高HO的光催化产量。富碳空位的CN(称为Sb/Cv-CN)上Sb单原子的HO析出速率为5.369 mmol gh,比单独的CN高10.9倍。通过结合实验表征和密度泛函理论模拟,我们揭示了Sb原子与富碳空位的CN之间存在强电子相互作用。这种相互作用能够维持Sb原子的富电子状态,促进电子有效地转移到鲍林型吸附氧上,并最终增强*OOH中间体的形成。这种创新的缺陷工程方法可以操控单原子催化剂的电子构型,为推动光催化氧还原反应生成HO提供了一条新途径。