Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany.
Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany.
Biochim Biophys Acta Mol Basis Dis. 2024 Jan;1870(1):166825. doi: 10.1016/j.bbadis.2023.166825. Epub 2023 Aug 1.
Chronic kidney disease (CKD) is accompanied by increased cardiovascular risk and heart failure (HF). In rodents, 2,8-dihydroxyadenine (DHA)-induced nephropathy is a frequently used CKD model. Cardiac and kidney tubular cells share high energy demand to guarantee constant contractive force of the heart or reabsorption/secretion of primary filtrated molecules and waste products by the kidney. Here we analyze time-dependent mechanisms of kidney damage and cardiac consequences under consideration of energetic pathways with the focus on mitochondrial function and lipid metabolism in mice.
CKD was induced by alternating dietary adenine supplementation (0.2 % or 0.05 % of adenine) in C57BL/6J mice for 9 weeks. Progressive kidney damage led to reduced creatinine clearance, kidney fibrosis and renal inflammation after 3, 6, and 9 weeks. No difference in cardiac function, mitochondrial respiration nor left ventricular fibrosis was observed at any time point. Investigating mechanisms of renal damage, protective SirT3 was decreased in CKD, which contrasted an increase in protein kinase B (AKT) expression, mechanistic target of rapamycin (mTOR) downstream signaling, induction of oxidative and endoplasmic reticulum (ER) stress. This occurred together with impaired renal mitochondrial function and accumulation of hexosylceramides (HexCer) as an established mediator of inflammation and mitochondrial dysfunction in the kidney.
2,8-DHA-induced CKD results in renal activation of the mTOR downstream signaling, endoplasmic reticulum stress, tubular injury, fibrosis, inflammation, oxidative stress and impaired kidney mitochondrial function in conjunction with renal hexosylceramide accumulation in C57BL/6J mice.
慢性肾脏病(CKD)伴有心血管风险增加和心力衰竭(HF)。在啮齿动物中,2,8-二羟腺嘌呤(DHA)诱导的肾病是一种常用的 CKD 模型。心脏和肾小管细胞具有很高的能量需求,以保证心脏的持续收缩力或肾脏对初级滤过分子和废物的重吸收/分泌。在这里,我们分析了在考虑能量途径的情况下,肾脏损伤和心脏后果的时变机制,重点是小鼠的线粒体功能和脂质代谢。
通过在 C57BL/6J 小鼠的饮食中交替补充腺嘌呤(0.2%或 0.05%的腺嘌呤),诱导 CKD 持续 9 周。进行性的肾脏损伤导致肌酐清除率降低、肾脏纤维化和 3、6 和 9 周后的肾脏炎症。在任何时间点均未观察到心脏功能、线粒体呼吸或左心室纤维化的差异。在研究肾脏损伤的机制时,在 CKD 中保护性 SirT3 减少,而蛋白激酶 B(AKT)表达增加,雷帕霉素机制靶蛋白(mTOR)下游信号转导,氧化和内质网(ER)应激诱导。这与肾脏线粒体功能受损和己糖神经酰胺(HexCer)积累同时发生,HexCer 是肾脏炎症和线粒体功能障碍的一种已确立的介质。
在 C57BL/6J 小鼠中,2,8-DHA 诱导的 CKD 导致 mTOR 下游信号转导、内质网应激、肾小管损伤、纤维化、炎症、氧化应激和肾脏线粒体功能受损,同时伴有肾脏己糖神经酰胺积累。