Département de Génie des Mines, de la Métallurgie et des Matériaux and Centre de recherche sur les matériaux avancés (CERMA), Université Laval, Québec, G1V 0A6, Canada.
Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, G1V 4G2, Canada.
Adv Healthc Mater. 2023 Oct;12(25):e2300528. doi: 10.1002/adhm.202300528. Epub 2023 Aug 17.
In brachytherapy (BT), or internal radiation therapy, cancer is treated by radioactive implants. For instance, episcleral plaques (EPs) for the treatment of uveal melanoma, are designed according to generic population approximations. However, more personalized implants can enhance treatment precision through better adjustment of dose profiles to the contours of cancerous tissues. An original approach integrating biomedical imaging, 3D printing, radioactivity painting, and biomedical imaging, is developed as a workflow for the development of tumor shape-specific BT implants. First, computer-aided design plans of EP are prepared according to guidelines prescribed by the Collaborative Ocular Melanoma Study protocol. Polyetheretherketone (PEEK), a high-performance polymer suitable for permanent implants, is used to 3D-print plaques and the geometrical accuracy of the printed design is evaluated by imaging. The possibility to modulate the dose distribution in a tridimensional manner is demonstrated by painting the inner surfaces of the EPs with radioactive 103Pd, followed by dose profile measurements. The possibility to modulate dose distributions generated by these 3D-printed plaques through radioactivity painting is therefore confirmed. Ex vivo surgical tests on human eyeballs are performed as an assessment of manipulation ease. Overall, this work provides a solution for the fabrication of tumor-specific radioactive implants requiring higher dose precision.
在近距离放射疗法(BT)或内部放射疗法中,通过放射性植入物来治疗癌症。例如,巩膜敷贴器(EP)用于治疗葡萄膜黑色素瘤,是根据一般人群的近似值设计的。然而,更个性化的植入物可以通过更好地调整剂量分布来适应癌组织的轮廓,从而提高治疗精度。本文提出了一种结合生物医学成像、3D 打印、放射性标记和生物医学成像的原始方法,作为开发针对肿瘤形状的 BT 植入物的工作流程。首先,根据协作性眼黑色素瘤研究方案的规定,准备 EP 的计算机辅助设计计划。使用适用于永久性植入物的高性能聚合物聚醚醚酮(PEEK)来 3D 打印 EP,并通过成像评估打印设计的几何精度。通过用放射性 103Pd 标记 EP 的内表面来证明以三维方式调节剂量分布的可能性,然后测量剂量分布曲线。因此,确认了通过放射性标记来调节这些 3D 打印 EP 产生的剂量分布的可能性。对人眼球进行离体手术测试,以评估操作的便利性。总的来说,这项工作为需要更高剂量精度的肿瘤特异性放射性植入物的制造提供了一种解决方案。