Suppr超能文献

基于预测三维剂量序列的妇科调强放疗计划优化方法。

A predicted three-dimensional dose sequence based treatment planning optimization method for gynecologic IMRT.

机构信息

Department of Radiotherapy Technology, Ningbo No.2 Hospital, Ningbo, Zhejiang 315310, China; School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China.

Department of Radiotherapy Technology, Ningbo No.2 Hospital, Ningbo, Zhejiang 315310, China.

出版信息

Med Eng Phys. 2023 Aug;118:104011. doi: 10.1016/j.medengphy.2023.104011. Epub 2023 Jun 24.

Abstract

In knowledge-based treatment planning (KBTP) for intensity-modulated radiation therapy (IMRT), the quality of the plan is dependent on the sophistication of the predicted dosimetric information and its application. In this paper, we propose a KBTP method that based on the effective and reasonable utilization of a three-dimensional (3D) dose prediction on planning optimization. We used an organs-at-risk (OARs) dose distribution prediction model to create a voxel-based dose sequence based optimization objective for OARs doses. This objective was used to reformulate a traditional fluence map optimization model, which involves a tolerable spatial re-assignment of the predicted dose distribution to the OAR voxels based on their current doses' positions at a sorted dose sequencing. The feasibility of this method was evaluated with ten gynecology (GYN) cancer IMRT cases by comparing its generated plan quality with the original clinical plan. Results showed feasible plan by proposed method, with comparable planning target volume (PTV) dose coverage and greater dose sparing of the OARs. Among ten GYN cases, the average V and V of rectum were decreased by 4%±4% (p = 0.02) and 4%±3% (p<0.01), respectively. V and V of bladder were decreased by 8%±2% (p<0.01) and 3%±2% (p<0.01), respectively. Our predicted dose sequence-based planning optimization method for GYN IMRT offered a flexible use of predicted 3D doses while ensuring the output plan consistency.

摘要

在调强放疗(IMRT)的基于知识的治疗计划(KBTP)中,计划的质量取决于预测剂量信息的复杂程度及其应用。在本文中,我们提出了一种 KBTP 方法,该方法基于对规划优化的有效和合理利用三维(3D)剂量预测。我们使用危及器官(OARs)剂量分布预测模型来创建基于体素的剂量序列优化目标,用于 OARs 剂量。该目标用于重新制定传统的通量图优化模型,该模型涉及根据当前剂量位置在排序剂量排序的基础上,对预测剂量分布在 OAR 体素中的可耐受空间重新分配。通过将其生成的计划质量与原始临床计划进行比较,用十个妇科(GYN)癌症 IMRT 病例评估了该方法的可行性。结果表明,该方法生成的计划是可行的,具有可比的靶区剂量覆盖和更大的 OAR 剂量保护。在十个 GYN 病例中,直肠的 V 和 V 分别降低了 4%±4%(p=0.02)和 4%±3%(p<0.01)。膀胱的 V 和 V 分别降低了 8%±2%(p<0.01)和 3%±2%(p<0.01)。我们针对 GYN IMRT 的基于预测剂量序列的计划优化方法提供了灵活使用预测的 3D 剂量的方法,同时确保输出计划的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验