Costa-Gutierrez Stefanie Bernardette, Raimondo Enzo Emanuel, Vincent Paula Andrea, de Cristóbal Ricardo Ezequiel
Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.
Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, San Miguel de Tucumán, Tucumán, Argentina.
J Basic Microbiol. 2023 Nov;63(11):1219-1232. doi: 10.1002/jobm.202300215. Epub 2023 Aug 3.
An underutilized experimental design was employed to isolate adapted mutants of the model bacterium Pseudomonas putida KT2440. The design involved subjecting a random pool of mini-Tn5 mutants of P. putida KT2440 to multiple rounds of selection in the rhizosphere of soybean plants irrigated with a NaCl solution. The isolated adapted mutants, referred to as MutAd, exhibited a mutation in the gene responsible for encoding the membrane-binding protein LapA, which plays a role in the initial stages of biofilm formation on abiotic surfaces. Two MutAd bacteria, MutAd160 and MutAd185, along with a lapA deletion mutant, were selected for further investigation to examine the impact of this gene on salt tolerance, rhizosphere fitness, production of extracellular polymeric substances (EPS), and promotion of plant growth. Despite the mutants' inability to form biofilms, they were able to attach to soybean seeds and roots. The MutAd bacteria demonstrated an elevated production of EPS when cultivated under saline conditions, which likely compensated for the absence of biofilm formation. MutAd185 bacteria exhibited enhanced root attachment and promoted the growth of soybean plants in slightly saline soils. The proposed experimental design holds promise for expediting bacterial adaptation to the rhizosphere of plants under specific environmental conditions, identifying genetic mutations that enhance bacterial fitness in those conditions, and thereby increasing their capacity to promote plant growth.
采用了一种未充分利用的实验设计来分离模式细菌恶臭假单胞菌KT2440的适应性突变体。该设计包括让恶臭假单胞菌KT2440的mini-Tn5突变体随机库在浇灌了NaCl溶液的大豆植物根际中进行多轮筛选。分离出的适应性突变体,称为MutAd,在负责编码膜结合蛋白LapA的基因中表现出突变,LapA在非生物表面生物膜形成的初始阶段发挥作用。选择了两个MutAd细菌MutAd160和MutAd185,以及一个lapA缺失突变体进行进一步研究,以检验该基因对耐盐性、根际适应性、细胞外聚合物(EPS)产生以及促进植物生长的影响。尽管这些突变体无法形成生物膜,但它们能够附着在大豆种子和根上。MutAd细菌在盐胁迫条件下培养时表现出EPS产量升高,这可能弥补了生物膜形成的缺失。MutAd185细菌表现出增强的根附着能力,并在轻度盐渍土壤中促进了大豆植物的生长。所提出的实验设计有望加快细菌在特定环境条件下对植物根际的适应,识别在这些条件下增强细菌适应性的基因突变,从而提高它们促进植物生长的能力。