Data Sciences Institute, Takeda Pharmaceuticals, Cambridge, MA, USA.
Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA.
Behav Res Methods. 2024 Mar;56(3):1349-1375. doi: 10.3758/s13428-023-02097-2. Epub 2023 Jul 24.
Researchers are often interested in examining between-individual differences in within-individual processes. If the process under investigation is tracked for a long time, its trajectory may show a certain degree of nonlinearity, so that the rate of change is not constant. A fundamental goal of modeling such nonlinear processes is to estimate model parameters that reflect meaningful aspects of change, including the parameters related to change and other parameters that shed light on substantive hypotheses. However, if the measurement occasion is unstructured, existing models cannot simultaneously estimate these two types of parameters. This article has three goals. First, we view the change over time as the area under the curve (AUC) of the rate of change versus time ( ) graph. Second, using the instantaneous rate of change midway through a time interval to approximate the average rate of change during that interval, we propose a new specification to describe longitudinal processes. In addition to obtaining the individual change-related parameters and other parameters related to specific research questions, the new specification allows for unequally spaced study waves and individual measurement occasions around each wave. Third, we derive the model-based interval-specific change and change from baseline, two common measures to evaluate change over time. We evaluate the proposed specification through a simulation study and a real-world data analysis. We also provide OpenMx and Mplus 8 code for each model with the novel specification.
研究人员通常有兴趣研究个体内过程中的个体间差异。如果正在研究的过程被跟踪很长时间,其轨迹可能会显示出一定程度的非线性,因此变化率不是恒定的。对这种非线性过程进行建模的一个基本目标是估计反映变化的有意义方面的模型参数,包括与变化相关的参数和其他阐明实质性假设的参数。但是,如果测量时机是非结构化的,现有模型就无法同时估计这两种类型的参数。本文有三个目标。首先,我们将随时间的变化视为变化率与时间()图的曲线下面积(AUC)。其次,我们使用时间间隔中途的瞬时变化率来近似该间隔内的平均变化率,从而提出了一种新的规范来描述纵向过程。除了获得个体变化相关参数和其他与特定研究问题相关的参数外,新规范还允许研究波之间的时间不均匀以及每个波周围的个体测量时机。第三,我们推导出基于模型的区间特定变化和从基线开始的变化,这是评估随时间变化的两种常用方法。我们通过模拟研究和实际数据分析来评估所提出的规范。我们还为每个具有新规范的模型提供了 OpenMx 和 Mplus 8 代码。