Suppr超能文献

基于图像变形的感知对比生成对抗网络的无监督图像到图像翻译。

Perceptual Contrastive Generative Adversarial Network based on image warping for unsupervised image-to-image translation.

机构信息

Institute of Data Science & Information Computing, National Chung Hsing University, 402, Taichung, Taiwan.

Institute of Data Science & Information Computing, National Chung Hsing University, 402, Taichung, Taiwan.

出版信息

Neural Netw. 2023 Sep;166:313-325. doi: 10.1016/j.neunet.2023.07.010. Epub 2023 Jul 22.

Abstract

This paper proposes an unsupervised image-to-image (UI2I) translation model, called Perceptual Contrastive Generative Adversarial Network (PCGAN), which can mitigate the distortion problem to enhance performance of the traditional UI2I methods. The PCGAN is designed with a two-stage UI2I model. In the first stage of the PCGAN, it leverages a novel image warping to transform shapes of objects in input (source) images. In the second stage of the PCGAN, the residual prediction is devised in refinements of the outputs of the first stage of the PCGAN. To promote performance of the image warping, a loss function, called Perceptual Patch-Wise InfoNCE, is developed in the PCGAN to effectively memorize the visual correspondences between warped images and refined images. Experimental results on quantitative evaluation and visualization comparison for UI2I benchmarks show that the PCGAN is superior to other existing methods considered here.

摘要

本文提出了一种无监督图像到图像(UI2I)翻译模型,称为感知对比生成对抗网络(PCGAN),它可以减轻失真问题,提高传统 UI2I 方法的性能。PCGAN 采用两阶段 UI2I 模型设计。在 PCGAN 的第一阶段,它利用一种新颖的图像变形技术来改变输入(源)图像中物体的形状。在 PCGAN 的第二阶段,残差预测是在第一阶段 PCGAN 的输出的细化中设计的。为了提高图像变形的性能,PCGAN 中开发了一个名为感知补丁信息 NCE(Perceptual Patch-Wise InfoNCE)的损失函数,以有效地记忆变形图像和细化图像之间的视觉对应关系。针对 UI2I 基准的定量评估和可视化比较的实验结果表明,PCGAN 优于本文考虑的其他现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验