Suppr超能文献

基于自触发分布式模型预测控制的线性多智能体系统动态一致性

Dynamic consensus of linear multi-agent system using self-triggered distributed model predictive control.

作者信息

R Resmi, S J Mija, Jacob Jeevamma

机构信息

TKM College of Engineering, Kollam, 691005, India.

Electrical Engineering Department, National Institute of Technology Calicut, Kozhikode, 673601, India.

出版信息

ISA Trans. 2023 Nov;142:177-187. doi: 10.1016/j.isatra.2023.07.019. Epub 2023 Jul 22.

Abstract

This article discusses self-triggering algorithm using distributed model predictive control (DMPC) to achieve dynamic consensus in linear multi-agent systems (MASs). The iterative computations and communications required at each time step in traditional consensus algorithms cause escalation of the energy consumption and shorten the life span of the MAS. An attempt to solve this problem is made by proposing a sequential self-triggering consensus algorithm, where each agent computes its own triggering instants. A Laguerre based DMPC design is adopted that notably reduces the computational complexity of conventional DMPC. The proposed self-triggered DMPC algorithm optimizes the control input and triggering interval while guaranteeing the dynamic consensus of the agents. By virtue of the Laguerre function based control architecture, the additional computations owing to the self-triggered algorithm do not impose stress on the controller; yet reduce the load on communication resources. The equality constraint on the terminal state of the agents is utilized along with Lyapunov criteria to establish the closed loop stability of the MAS. The proposed scheme achieves a considerable drop in controller design computations as well as data transmissions among agents, and the same is established by comparing these traits of existing schemes while achieving comparable performance. The proposed algorithm is verified through simulation of platoon configuration of vehicles, each of which is modeled as a linear multi-input multi-output (MIMO) system.

摘要

本文讨论了使用分布式模型预测控制(DMPC)在线性多智能体系统(MAS)中实现动态一致性的自触发算法。传统一致性算法在每个时间步所需的迭代计算和通信会导致能量消耗增加,并缩短MAS的寿命。通过提出一种顺序自触发一致性算法来尝试解决这个问题,其中每个智能体计算自己的触发时刻。采用了基于拉盖尔的DMPC设计,显著降低了传统DMPC的计算复杂度。所提出的自触发DMPC算法在保证智能体动态一致性的同时,优化了控制输入和触发间隔。借助基于拉盖尔函数的控制架构,自触发算法带来的额外计算不会给控制器带来压力,却减少了通信资源的负载。利用智能体终端状态的等式约束以及李雅普诺夫准则来建立MAS的闭环稳定性。所提出的方案在控制器设计计算以及智能体之间的数据传输方面实现了显著下降,通过比较现有方案的这些特性并在实现可比性能的同时得以证实。通过对车辆队列配置进行仿真验证了所提出的算法,其中每辆车都被建模为线性多输入多输出(MIMO)系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验