Suppr超能文献

营养模式作为老年人群肝脏健康的机器学习预测指标

Nutritional patterns as machine learning predictors of liver health in a population of elderly subjects.

作者信息

Lampignano Luisa, Tatoli Rossella, Donghia Rossella, Bortone Ilaria, Castellana Fabio, Zupo Roberta, Lozupone Madia, Panza Francesco, Conte Caterina, Sardone Rodolfo

机构信息

Local Healthcare Authority of Bari, ASL Bari, Bari, Italy.

National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Italy.

出版信息

Nutr Metab Cardiovasc Dis. 2023 Nov;33(11):2233-2241. doi: 10.1016/j.numecd.2023.07.009. Epub 2023 Jul 13.

Abstract

BACKGROUND AND AIMS

Non-alcoholic hepatic steatosis affects 25% of adults worldwide and its prevalence increases with age. There is currently no definitive treatment for NAFLD but international guidelines recommend a lifestyle-based approach, including a healthy diet. The aim of this study was to investigate the interactions between eating habits and the risk of steatosis and/or hepatic fibrosis, using a machine learning approach, in a non-institutionalized elderly population.

METHODS AND RESULTS

We recruited 1929 subjects, mean age 74 years, from the population-based Salus in Apulia Study. Dietary habits and the risk of steatosis and hepatic fibrosis were evaluated with a validated food frequency questionnaire, the Fatty Liver Index (FLI) and the FIB-4 score, respectively. Two dietary patterns associated with the risk of steatosis and hepatic fibrosis have been identified. They are both similar to a "western" diet, defined by a greater consumption of refined foods, with a rich content of sugars and saturated fats, and alcoholic and non-alcoholic calorie drinks.

CONCLUSION

This study further supports the concept of diet as a factor that significantly influences the development of the most widespread liver diseases. However, longitudinal studies are needed to better understand the causal effect of the consumption of particular foods on fat accumulation in the liver.

摘要

背景与目的

非酒精性肝脂肪变性影响全球25%的成年人,且其患病率随年龄增长而增加。目前尚无针对非酒精性脂肪性肝病的确切治疗方法,但国际指南推荐采用基于生活方式的方法,包括健康饮食。本研究的目的是使用机器学习方法,在非机构化老年人群中调查饮食习惯与肝脂肪变性和/或肝纤维化风险之间的相互作用。

方法与结果

我们从基于人群的阿普利亚地区健康研究中招募了1929名受试者,平均年龄74岁。分别使用经过验证的食物频率问卷、脂肪肝指数(FLI)和FIB-4评分评估饮食习惯以及肝脂肪变性和肝纤维化的风险。已确定两种与肝脂肪变性和肝纤维化风险相关的饮食模式。它们都类似于“西方”饮食,其特点是精制食品摄入量更高,富含糖和饱和脂肪,以及含酒精和不含酒精的高热量饮料。

结论

本研究进一步支持了饮食是显著影响最常见肝脏疾病发展的一个因素这一概念。然而,需要进行纵向研究以更好地了解特定食物的摄入对肝脏脂肪堆积的因果效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验