Suppr超能文献

利用人工智能估算表观年龄:量化重睑成形术的效果。

Estimating apparent age using artificial intelligence: Quantifying the effect of blepharoplasty.

机构信息

Division of Orbital and Ophthalmic Plastic Surgery, Jules Stein Eye Institute, University of California, Los Angeles, CA, United States.

David Geffen School of Medicine UCLA, Los Angeles, CA, United States.

出版信息

J Plast Reconstr Aesthet Surg. 2023 Oct;85:336-343. doi: 10.1016/j.bjps.2023.07.017. Epub 2023 Jul 17.

Abstract

OBJECTIVES

Quantify the rejuvenation effect of blepharoplasty.

METHODS

A dataset of facial photographs was assembled and randomly split into 90% training and 10% validation sets. An artificial intelligence model was trained to input a facial photograph and output the apparent age of the depicted face. A retrospective chart review of patients who underwent blepharoplasty was used to assemble a test set-preoperative and postoperative photographs were culled and subsequently analyzed by the model.

RESULTS

A total of 47394 images of patients aged 26-89 years old were used for model training and validation. On the validation set, the model achieved 75% accuracy with a mean absolute error of 1.38 years and Pearson's r of 0.92. A total of 103 patients (29 males and 74 females) met the test set inclusion criteria (upper blepharoplasty n = 28, lower blepharoplasty n = 33, and quadrilateral blepharoplasty n = 42). The test set age ranged from 30.3 to 83.8 years old (mean 60.8, standard deviation 11.4). Overall, the model-predicted test set patients to be 0.74 years younger preoperatively versus 2.52 years younger postoperatively (p < 0.01). Significant underestimation of age was observed in women who underwent lower blepharoplasty (n = 23, 1.28 years older preoperatively vs. 2.32 years younger postoperatively, p = 3.8 × 10) and men who underwent quadrilateral blepharoplasty (n = 10, 0.71 years younger preoperatively vs. 5.34 years younger postoperatively, p = 0.02).

CONCLUSIONS

The deep learning algorithm developed in this study demonstrates that, on average, blepharoplasty provides a rejuvenating effect of approximately 2 years.

摘要

目的

量化重睑术的年轻化效果。

方法

收集面部照片数据集,并将其随机分为 90%的训练集和 10%的验证集。训练人工智能模型,输入面部照片并输出所描绘面部的表观年龄。回顾性分析行重睑术患者的病历,采集术前和术后照片,然后由模型进行分析。

结果

共使用 47394 张年龄在 26-89 岁的患者图像对模型进行训练和验证。在验证集上,该模型的准确率为 75%,平均绝对误差为 1.38 岁,Pearson 相关系数为 0.92。共有 103 名患者(29 名男性和 74 名女性)符合测试集纳入标准(上睑成形术 n=28,下睑成形术 n=33,四边形睑成形术 n=42)。测试集年龄范围为 30.3-83.8 岁(平均 60.8 岁,标准差 11.4)。总的来说,模型预测术前测试集患者比术后年轻 0.74 岁,比术后年轻 2.52 岁(p<0.01)。行下睑成形术的女性(n=23)和行四边形睑成形术的男性(n=10)术前年龄被显著低估,分别为 1.28 岁和 0.71 岁,术后分别为 2.32 岁和 5.34 岁(p=3.8×10)。

结论

本研究开发的深度学习算法表明,重睑术平均可提供约 2 年的年轻化效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验