Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
Technische Universität Berlin, Institut für Chemie, Sekr. CL1, Müller-Breslau-Str.10, D-10623 Berlin, Germany.
J Mol Biol. 2024 Mar 1;436(5):168227. doi: 10.1016/j.jmb.2023.168227. Epub 2023 Aug 5.
The cyanobacteriochrome Slr1393 can be photoconverted between a red (Pr) and green absorbing form (Pg). The recently determined crystal structures of both states suggest a major movement of Trp496 from a stacking interaction with ring D of the phycocyanobilin (PCB) chromophore in Pr to a position outside the chromophore pocket in Pg. Here, we investigated the role of this amino acid during photoconversion in solution using engineered protein variants in which Trp496 was substituted by natural and non-natural amino acids. These variants and the native protein were studied by various spectroscopic techniques (UV-vis absorption, fluorescence, IR, NIR and UV resonance Raman) complemented by theoretical approaches. Trp496 is shown to affect the electronic transition of PCB and to be essential for the thermal equilibrium between Pr and an intermediate state O. However, Trp496 is not required to stabilize the tilted orientation of ring D in Pr, and does not play a role in the secondary structure changes of Slr1393 during the Pr/Pg transition. The present results confirm the re-orientation of Trp496 upon Pr → Pg conversion, but do not provide evidence of a major change in the microenvironment of this residue. Structural models indicate the penetration of water molecules into the chromophore pocket in both Pr and Pg states and thus water-Trp contacts, which can readily account for the subtle spectral changes between Pr and Pg. Thus, we conclude that reorientation of Trp496 during the Pr-to-Pg photoconversion in solution is not associated with a major change in the dielectric environment in the two states.
蓝藻视紫红质 Slr1393 可以在红色(Pr)和绿色吸收形式(Pg)之间光致变色。最近确定的两种状态的晶体结构表明,色氨酸 496 从与藻红胆素(PCB)发色团的环 D 的堆叠相互作用的位置发生了主要移动,在 Pg 中位于发色团口袋之外的位置。在这里,我们使用工程化的蛋白质变体在溶液中研究了该氨基酸在光致变色过程中的作用,其中色氨酸 496 被天然和非天然氨基酸取代。这些变体和天然蛋白质通过各种光谱技术(紫外可见吸收、荧光、红外、近红外和紫外共振拉曼)进行了研究,并辅以理论方法。研究表明,色氨酸 496 影响 PCB 的电子跃迁,并且对 Pr 和中间态 O 之间的热平衡是必需的。然而,色氨酸 496 对于稳定 PCB 在 Pr 中的倾斜取向不是必需的,并且在 Pr/Pg 转变过程中,对于 Slr1393 的二级结构变化也没有作用。目前的结果证实了在 Pr 到 Pg 转化过程中色氨酸 496 的重定向,但没有提供关于该残基微环境发生重大变化的证据。结构模型表明,水分子在两种 Pr 和 Pg 状态下都可以渗透到发色团口袋中,因此水分子与色氨酸的接触可以很好地解释 Pr 和 Pg 之间的细微光谱变化。因此,我们得出结论,在溶液中 Pr 到 Pg 的光致变色过程中色氨酸 496 的重定向与两种状态下介电环境的重大变化无关。