Suppr超能文献

卷曲扭蔓吊芙蓉的卷曲运动的力的产生。

Force Generation in the Coiling Tendrils of Passiflora caerulea.

机构信息

Plant Biomechanics Group @ Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg, Germany.

Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, D-79110, Freiburg, Germany.

出版信息

Adv Sci (Weinh). 2023 Oct;10(28):e2301496. doi: 10.1002/advs.202301496. Epub 2023 Aug 6.

Abstract

Tendrils of climbing plants coil along their length, thus forming a striking helical spring and generating tensional forces. It is found that, for tendrils of the passion flower Passiflora caerulea, the generated force lies in the range of 6-140 mN, which is sufficient to lash the plant tightly to its substrate. Further, it is revealed that the generated force strongly correlates with the water status of the plant. Based on a combination of in situ force measurements with anatomical investigations and dehydration-rehydration experiments on both entire tendril segments and isolated lignified tissues, a two-phasic mechanism for spring formation is proposed. First, during the free coiling phase, the center of the tendril begins to lignify unilaterally. At this stage, both the generated tension and the stability of the form of the spring still depend on turgor pressure. The unilateral contraction of a bilayer as being the possible driving force for the tendril coiling motion is discussed. Second, in a stabilization phase, the entire center of the coiled tendril lignifies, stiffening the spring and securing its function irrespective of its hydration status.

摘要

攀援植物的卷须沿其长度卷曲,从而形成引人注目的螺旋弹簧,并产生张力。研究发现,对于蓝叶西番莲 Passiflora caerulea 的卷须,产生的力在 6-140 mN 范围内,足以使植物紧紧地固定在其基质上。此外,还揭示了产生的力与植物的水分状况密切相关。基于原位力测量与解剖学研究以及对整个卷须段和分离的木质化组织的脱水-复水实验的结合,提出了一种用于弹簧形成的两相机制。首先,在自由卷曲阶段,卷须的中心开始单侧木质化。在这个阶段,产生的张力和弹簧形状的稳定性仍然取决于膨压。讨论了双层单侧收缩作为卷须卷曲运动的可能驱动力。其次,在稳定阶段,卷曲的卷须的整个中心木质化,使弹簧变硬,使其功能不受其水合状态的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb38/10558631/3538ee0def8d/ADVS-10-2301496-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验