Suppr超能文献

基于预训练和集成的阿尔茨海默病检测。

Pre-training and ensembling based Alzheimer's disease detection.

出版信息

Technol Health Care. 2024;32(1):379-395. doi: 10.3233/THC-230571.

Abstract

BACKGROUND

Alzheimer's disease (AD) endangers the physical and mental health of the elderly, constituting one of the most crucial social challenges. Due to lack of effective AD intervention drugs, it is very important to diagnose AD in the early stage, especially in the Mild Cognitive Impairment (MCI) phase.

OBJECTIVE

At present, an automatic classification technology is urgently needed to assist doctors in analyzing the status of the candidate patient. The artificial intelligence enhanced Alzheimer's disease detection can reduce costs to detect Alzheimer's disease.

METHODS

In this paper, a novel pre-trained ensemble-based AD detection (PEADD) framework with three base learners (i.e., ResNet, VGG, and EfficientNet) for both the audio-based and PET (Positron Emission Tomography)-based AD detection is proposed under a unified image modality. Specifically, the effectiveness of context-enriched image modalities instead of the traditional speech modality (i.e., context-free audio matrix) for the audio-based AD detection, along with simple and efficient image denoising strategy has been inspected comprehensively. Meanwhile, the PET-based AD detection based on the denoised PET image has been described. Furthermore, different voting methods for applying an ensemble strategy (i.e., hard voting and soft voting) has been investigated in detail.

RESULTS

The results showed that the classification accuracy was 92% and 99% on the audio-based and PET-based AD datasets, respectively. Our extensive experimental results demonstrate that our PEADD outperforms the state-of-the-art methods on both audio-based and PET-based AD datasets simultaneously.

CONCLUSIONS

The network model can provide an objective basis for doctors to detect Alzheimer's Disease.

摘要

背景

阿尔茨海默病(AD)危害老年人身心健康,是最严峻的社会挑战之一。由于缺乏有效的 AD 干预药物,早期诊断 AD 非常重要,尤其是在轻度认知障碍(MCI)阶段。

目的

目前,迫切需要一种自动分类技术来协助医生分析候选患者的状况。人工智能增强的阿尔茨海默病检测可以降低检测阿尔茨海默病的成本。

方法

本文提出了一种新的基于预训练集成的 AD 检测(PEADD)框架,该框架使用三个基础学习者(即 ResNet、VGG 和 EfficientNet)进行基于音频和正电子发射断层扫描(PET)的 AD 检测,基于统一的图像模态。具体来说,全面检查了上下文丰富的图像模态(而非传统的语音模态,即无上下文音频矩阵)在基于音频的 AD 检测中的有效性,以及简单而有效的图像去噪策略。同时,描述了基于去噪 PET 图像的基于 PET 的 AD 检测。此外,详细研究了应用集成策略的不同投票方法(即硬投票和软投票)。

结果

结果表明,基于音频的 AD 数据集和基于 PET 的 AD 数据集的分类准确率分别为 92%和 99%。我们的广泛实验结果表明,我们的 PEADD 在基于音频的和基于 PET 的 AD 数据集上均优于最新方法。

结论

该网络模型可以为医生提供客观的依据,以检测阿尔茨海默病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验