Suppr超能文献

用于2019冠状病毒病应对管理和医疗物流规划的预测性决策支持系统。

A predictive decision support system for coronavirus disease 2019 response management and medical logistic planning.

作者信息

Atek Sofiane, Bianchini Filippo, De Vito Corrado, Cardinale Vincenzo, Novelli Simone, Pesaresi Cristiano, Eugeni Marco, Mecella Massimo, Rescio Antonello, Petronzio Luca, Vincenzi Aldo, Pistillo Pasquale, Giusto Gianfranco, Pasquali Giorgio, Alvaro Domenico, Villari Paolo, Mancini Marco, Gaudenzi Paolo

机构信息

Department of Aerospace and Mechanical Engineering, Sapienza University of Rome, Rome, Italy.

Telespazio S.p.A, Rome, Italy.

出版信息

Digit Health. 2023 Aug 1;9:20552076231185475. doi: 10.1177/20552076231185475. eCollection 2023 Jan-Dec.

Abstract

OBJECTIVE

Coronavirus disease 2019 demonstrated the inconsistencies in adequately responding to biological threats on a global scale due to a lack of powerful tools for assessing various factors in the formation of the epidemic situation and its forecasting. Decision support systems have a role in overcoming the challenges in health monitoring systems in light of current or future epidemic outbreaks. This paper focuses on some applied examples of logistic planning, a key service of the Earth Cognitive System for Coronavirus Disease 2019 project, here presented, evidencing the added value of artificial intelligence algorithms towards predictive hypotheses in tackling health emergencies.

METHODS

Earth Cognitive System for Coronavirus Disease 2019 is a decision support system designed to support healthcare institutions in monitoring, management and forecasting activities through artificial intelligence, social media analytics, geospatial analysis and satellite imaging. The monitoring, management and prediction of medical equipment logistic needs rely on machine learning to predict the regional risk classification colour codes, the emergency rooms attendances, and the forecast of regional medical supplies, synergically enhancing geospatial and temporal dimensions.

RESULTS

The overall performance of the regional risk colour code classifier yielded a high value of the macro-average F1-score (0.82) and an accuracy of 85%. The prediction of the emergency rooms attendances for the Lazio region yielded a very low root mean square error (<11 patients) and a high positive correlation with the actual values for the major hospitals of the Lazio region which admit about 90% of the region's patients. The prediction of the medicinal purchases for the regions of Lazio and Piemonte has yielded a low root mean squared percentage error of 16%.

CONCLUSIONS

Accurate forecasting of the evolution of new cases and drug utilisation enables the resulting excess demand throughout the supply chain to be managed more effectively. Forecasting during a pandemic becomes essential for effective government decision-making, managing supply chain resources, and for informing tough policy decisions.

摘要

目的

2019年冠状病毒病表明,由于缺乏评估疫情形势形成和预测中各种因素的有力工具,在全球范围内应对生物威胁时存在不一致性。鉴于当前或未来的疫情爆发,决策支持系统在克服健康监测系统中的挑战方面发挥着作用。本文重点介绍了2019年冠状病毒病项目地球认知系统的关键服务——物流规划的一些应用实例,展示了人工智能算法在应对突发卫生事件的预测假设方面的附加价值。

方法

2019年冠状病毒病地球认知系统是一个决策支持系统,旨在通过人工智能、社交媒体分析、地理空间分析和卫星成像,支持医疗机构进行监测、管理和预测活动。医疗设备物流需求的监测、管理和预测依靠机器学习来预测区域风险分类颜色代码、急诊室就诊人数以及区域医疗用品的预测,协同增强地理空间和时间维度。

结果

区域风险颜色代码分类器的整体性能产生了较高的宏平均F1分数(0.82)和85%的准确率。拉齐奥地区急诊室就诊人数的预测产生了非常低的均方根误差(<11名患者),并且与拉齐奥地区接收该地区约90%患者的主要医院的实际值具有高度正相关性。拉齐奥和皮埃蒙特地区药品采购的预测产生了16%的低均方根百分比误差。

结论

准确预测新病例的演变和药物使用情况,能够更有效地管理整个供应链中由此产生的过度需求。在大流行期间进行预测对于有效的政府决策、管理供应链资源以及为艰难的政策决策提供信息至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1d0/10399258/05d4f236dc1e/10.1177_20552076231185475-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验