Suppr超能文献

肯尼亚维希加县结核病治疗患者的死亡率和生存概率分布的预测因素。

Predictors of mortality and survival probability distribution among patients on tuberculosis treatment in Vihiga County, Kenya.

机构信息

Department of Health; Vihiga County Government, Kenya.

School of Health Sciences: Directorate of Research, Innovation and Partnerships; Jaramogi Oginga Odinga University of Science and Technology.

出版信息

Afr Health Sci. 2023 Mar;23(1):218-230. doi: 10.4314/ahs.v23i1.24.

Abstract

BACKGROUND

Tuberculosis (TB) related mortality remains a serious impediment in ending TB epidemic.

OBJECTIVE

To estimate survival probability and identify predictors, causes and conditions contributing to mortality among TB patients in Vihiga County.

METHODS

A cohort of 291 patients from 20 purposively selected health facilities were prospectively considered. Data was obtained by validated questionnaires through face-to-face interviews. Survival probabilities were estimated using Kaplan-Meier method while Cox proportional hazard model identified predictors of TB mortality through calculation of hazard ratios at 95% confidence intervals. Mortality audit data was qualitatively categorized to elicit causes and conditions contributing to mortality.

RESULTS

209 (72%) were male, median age was 40 (IQR=32-53) years while TB/HIV coinfection rate was 35%. Overall, 45 (15%) patients died, majority (78% (log rank<0.001)) during intensive phase. The overall mortality rate was 32.2 (95% CI 23.5 - 43.1) deaths per 1000 person months and six months' survival probability was 0.838 (95% CI, 0.796-0.883). Mortality was higher (27%) among HIV positive than HIV negative (9%) TB patients. Independent predictors of mortality included; comorbidities (HR = 2.72, 95% CI,1.36-5.44, p< 0.005), severe illness (HR=5.06, 95% CI,1.59-16.1, p=0.006), HIV infection (HR=2.56, 95% CI,1.28-5.12, p=0.008) and smoking (HR=2.79, 95% CI,1.01-7.75, p=0.049). Independent predictors of mortality among HIV negative patients included; comorbidities (HR = 4.25, 95% CI; 1.15-15.7, p = 0.03) and being clinically diagnosed (HR = 4.8, 95% CI; 1.43-16, P = 0.01) while among HIV positive; they included smoking (HR = 4.05, 95% CI;1.03-16.0, P = 0.04), severe illness (HR = 5.84, 95% CI; 1.08-31.6, P = 0.04), severe malnutrition (HR = 4.56, 95% CI; 1.33-15.6, P = 0.01) and comorbidities (HR = 3.04, 95% CI; 1.03-8.97, p = 0.04). More than a half (52%) of mortality among HIV positive were ascribed to advanced HIV diseases while majority of (72%) of HIV negative patients died to TB related lung disease. Conditions contributing to mortality were largely patient and health system related.

CONCLUSION

Risk of TB mortality is high and is attributable to comorbidities, severe illness, HIV and smoking. Causes and conditions contributing to TB mortality are multifaceted but modifiable. Improving TB/HIV care could reduce mortality in this setting.

摘要

背景

结核病(TB)相关死亡率仍然是终结结核病流行的严重障碍。

目的

评估维希加县结核病患者的生存概率,并确定预测因素、导致结核病患者死亡的原因和条件。

方法

前瞻性考虑了从 20 个有目的选择的卫生机构中招募的 291 名患者。通过面对面访谈使用经过验证的问卷获得数据。使用 Kaplan-Meier 方法估计生存概率,而 Cox 比例风险模型通过计算危险比(在 95%置信区间内)确定结核病死亡率的预测因素。对死亡率审核数据进行定性分类,以确定导致死亡的原因和条件。

结果

209 名(72%)为男性,中位年龄为 40 岁(IQR=32-53)岁,而结核/艾滋病毒合并感染率为 35%。总体而言,有 45 名(15%)患者死亡,其中大多数(78%(对数秩检验<0.001))在强化期死亡。总的死亡率为 32.2(95%CI 23.5-43.1)每 1000 人月死亡人数,六个月的生存率为 0.838(95%CI,0.796-0.883)。艾滋病毒阳性患者的死亡率(27%)高于艾滋病毒阴性(9%)结核病患者。死亡率的独立预测因素包括:合并症(HR=2.72,95%CI,1.36-5.44,p<0.005)、重病(HR=5.06,95%CI,1.59-16.1,p=0.006)、艾滋病毒感染(HR=2.56,95%CI,1.28-5.12,p=0.008)和吸烟(HR=2.79,95%CI,1.01-7.75,p=0.049)。艾滋病毒阴性患者死亡率的独立预测因素包括:合并症(HR=4.25,95%CI;1.15-15.7,p=0.03)和临床诊断(HR=4.8,95%CI;1.43-16,P=0.01),而在艾滋病毒阳性患者中,包括吸烟(HR=4.05,95%CI;1.03-16.0,P=0.04)、重病(HR=5.84,95%CI;1.08-31.6,P=0.04)、严重营养不良(HR=4.56,95%CI;1.33-15.6,P=0.01)和合并症(HR=3.04,95%CI;1.03-8.97,p=0.04)。艾滋病毒阳性患者中超过一半(52%)的死亡归因于晚期艾滋病毒疾病,而大多数(72%)艾滋病毒阴性患者因结核病相关肺部疾病而死亡。导致死亡的原因和条件在很大程度上是患者和卫生系统相关的。

结论

结核病死亡的风险很高,可归因于合并症、重病、艾滋病毒和吸烟。导致结核病死亡的原因和条件是多方面的,但可以改变。改善结核病/艾滋病毒护理可以降低这一环境中的死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d42/10398452/7382f0482e91/AFHS2301-0218Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验