Chang Lixian, Yan Mingchen, Zhang Jingliao, Liu Binghang, Zhang Li, Guo Ye, Sun Jing, Wan Yang, Yi Meihui, Lan Yang, Cai Yuli, Ren Yuanyuan, Zheng Haihui, Zhang Aoli, Li Zhenyu, Wang Jian, Li Yingrui, Zhu Xiaofan
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
Shenzhen Digital Life Institute, Shenzhen, China.
Blood Sci. 2023 May 3;5(3):180-186. doi: 10.1097/BS9.0000000000000157. eCollection 2023 Jul.
Children with severe aplastic anemia (SAA) face heterogeneous prognoses after immunosuppressive therapy (IST). There are few models that can predict the long-term outcomes of IST for these patients. The objective of this paper is to develop a more effective prediction model for SAA prognosis based on clinical electronic medical records from 203 children with newly diagnosed SAA. In the early stage, a novel model for long-term outcomes of SAA patients with IST was developed using machine-learning techniques. Among the indicators related to long-term efficacy, white blood cell count, lymphocyte count, absolute reticulocyte count, lymphocyte ratio in bone-marrow smears, C-reactive protein, and the level of IL-6, IL-8 and vitamin B12 in the early stage are strongly correlated with long-term efficacy ( < .05). Taken together, we analyzed the long-term outcomes of rabbit anti-thymocyte globulin and cyclosporine therapy for children with SAA through machine-learning techniques, which may shorten the observation period of therapeutic effects and reduce treatment costs and time.
重度再生障碍性贫血(SAA)患儿在接受免疫抑制治疗(IST)后预后各异。目前几乎没有模型能够预测这些患者IST的长期疗效。本文的目的是基于203例新诊断SAA患儿的临床电子病历,开发一种更有效的SAA预后预测模型。在早期,利用机器学习技术开发了一种SAA患者IST长期疗效的新模型。在与长期疗效相关的指标中,早期的白细胞计数、淋巴细胞计数、绝对网织红细胞计数、骨髓涂片淋巴细胞比例、C反应蛋白以及IL-6、IL-8和维生素B12水平与长期疗效密切相关(<0.05)。综上所述,我们通过机器学习技术分析了兔抗胸腺细胞球蛋白和环孢素治疗儿童SAA的长期疗效,这可能会缩短疗效观察期,降低治疗成本和时间。