Suppr超能文献

一种用于对阿尔茨海默病及相关痴呆症患者自杀行为进行分类的自然语言处理算法:利用电子健康记录数据进行开发与验证

A Natural Language Processing Algorithm for Classifying Suicidal Behaviors in Alzheimer's Disease and Related Dementia Patients: Development and Validation Using Electronic Health Records Data.

作者信息

Zandbiglari Kimia, Hasanzadeh Hamid Reza, Kotecha Pareeta, Sajdeya Ruba, Goodin Amie J, Jiao Tianze, Adiba Farzana I, Mardini Mamoun T, Bian Jiang, Rouhizadeh Masoud

出版信息

medRxiv. 2023 Jul 24:2023.07.21.23292976. doi: 10.1101/2023.07.21.23292976.

Abstract

This study aimed to develop a natural language processing algorithm (NLP) using machine learning (ML) and Deep Learning (DL) techniques to identify and classify documentation of suicidal behaviors in patients with Alzheimer's disease and related dementia (ADRD). We utilized MIMIC-III and MIMIC-IV datasets and identified ADRD patients and subsequently those with suicide ideation using relevant International Classification of Diseases (ICD) codes. We used cosine similarity with ScAN (Suicide Attempt and Ideation Events Dataset) to calculate semantic similarity scores of ScAN with extracted notes from MIMIC for the clinical notes. The notes were sorted based on these scores, and manual review and categorization into eight suicidal behavior categories were performed. The data were further analyzed using conventional ML and DL models, with manual annotation as a reference. The tested classifiers achieved classification results close to human performance with up to 98% precision and 98% recall of suicidal ideation in the ADRD patient population. Our NLP model effectively reproduced human annotation of suicidal ideation within the MIMIC dataset. These results establish a foundation for identifying and categorizing documentation related to suicidal ideation within ADRD population, contributing to the advancement of NLP techniques in healthcare for extracting and classifying clinical concepts, particularly focusing on suicidal ideation among patients with ADRD. Our study showcased the capability of a robust NLP algorithm to accurately identify and classify documentation of suicidal behaviors in ADRD patients.

摘要

本研究旨在开发一种自然语言处理算法(NLP),利用机器学习(ML)和深度学习(DL)技术来识别和分类阿尔茨海默病及相关痴呆症(ADRD)患者的自杀行为记录。我们利用了MIMIC-III和MIMIC-IV数据集,通过相关国际疾病分类(ICD)代码识别出ADRD患者,随后识别出自杀意念患者。我们使用与自杀未遂和意念事件数据集(ScAN)的余弦相似度,来计算ScAN与从MIMIC中提取的临床笔记的语义相似度得分。根据这些得分对笔记进行排序,并进行人工审核和分类为八个自杀行为类别。以人工标注为参考,使用传统的ML和DL模型对数据进行进一步分析。测试的分类器在ADRD患者群体中实现了接近人类表现的分类结果,自杀意念的精确率高达98%,召回率高达98%。我们的NLP模型有效地再现了MIMIC数据集中自杀意念的人工标注。这些结果为识别和分类ADRD人群中与自杀意念相关的记录奠定了基础,有助于推进医疗保健领域中NLP技术在提取和分类临床概念方面的发展,特别是关注ADRD患者中的自杀意念。我们的研究展示了一种强大的NLP算法准确识别和分类ADRD患者自杀行为记录的能力。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验