Suppr超能文献

利用自然语言处理提高自杀意念和自杀企图的确定率。

Improving ascertainment of suicidal ideation and suicide attempt with natural language processing.

机构信息

Department of Biomedical Informatics, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 1500, Nashville, TN, 37232, USA.

Department of Medicine, Vanderbilt University Medical Center, Nashville, USA.

出版信息

Sci Rep. 2022 Sep 7;12(1):15146. doi: 10.1038/s41598-022-19358-3.

Abstract

Methods relying on diagnostic codes to identify suicidal ideation and suicide attempt in Electronic Health Records (EHRs) at scale are suboptimal because suicide-related outcomes are heavily under-coded. We propose to improve the ascertainment of suicidal outcomes using natural language processing (NLP). We developed information retrieval methodologies to search over 200 million notes from the Vanderbilt EHR. Suicide query terms were extracted using word2vec. A weakly supervised approach was designed to label cases of suicidal outcomes. The NLP validation of the top 200 retrieved patients showed high performance for suicidal ideation (area under the receiver operator curve [AUROC]: 98.6, 95% confidence interval [CI] 97.1-99.5) and suicide attempt (AUROC: 97.3, 95% CI 95.2-98.7). Case extraction produced the best performance when combining NLP and diagnostic codes and when accounting for negated suicide expressions in notes. Overall, we demonstrated that scalable and accurate NLP methods can be developed to identify suicidal behavior in EHRs to enhance prevention efforts, predictive models, and precision medicine.

摘要

方法依赖于诊断代码来大规模识别电子健康记录 (EHR) 中的自杀意念和自杀企图,但是这种方法并不理想,因为与自杀相关的结果被严重低估了。我们建议使用自然语言处理 (NLP) 来改进自杀结果的确定。我们开发了信息检索方法来搜索范德比尔特 EHR 中的 2 亿多条记录。使用 word2vec 提取自杀查询词。设计了一种弱监督方法来标记自杀结果的病例。对前 200 名检索患者进行的 NLP 验证表明,自杀意念的表现非常出色(接收者操作特征曲线下的面积 [AUROC]:98.6,95%置信区间 [CI] 97.1-99.5),自杀企图的表现也非常出色(AUROC:97.3,95%CI 95.2-98.7)。当结合 NLP 和诊断代码,并考虑到记录中否定自杀的表达时,病例提取的表现最佳。总体而言,我们证明了可以开发可扩展且准确的 NLP 方法来识别 EHR 中的自杀行为,以加强预防工作、预测模型和精准医疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4464/9452591/d823136114cb/41598_2022_19358_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验