Zhao Xiao-Yu, Lempke Samantha L, Urbán Arroyo Jan C, Yin Bocheng, Holness Nadia K, Smiley Jamison, Ewald Sarah E
Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
bioRxiv. 2023 Jul 25:2023.07.24.549965. doi: 10.1101/2023.07.24.549965.
is an obligate intracellular, protozoan pathogen of rodents and humans. ability to grow within cells and evade cell-autonomous immunity depends on the integrity of the parasitophorous vacuole (PV). Interferon-inducible guanylate binding proteins (GBPs) are central mediators of clearance, however, the precise mechanism linking GBP recruitment to the PV and restriction is not clear. This knowledge gap is linked to heterogenous GBP-targeting across a population of vacuoles and the lack of tools to selectively purify the intact PV. To identify mediators of parasite clearance associated with GBP2-positive vacuoles, we employed a novel protein discovery tool automated spatially targeted optical micro proteomics (autoSTOMP). This approach identified inducible nitric oxide synthetase (iNOS) enriched at levels similar to the GBPs in infected bone marrow-derived myeloid cells. iNOS expression on myeloid cells was necessary for mice to control growth in vivo and survive acute infection. infection of IFNγ-primed macrophage was sufficient to robustly induce iNOS expression. iNOS restricted infection through nitric oxide synthesis rather than arginine depletion, leading to robust and selective nitration of the PV. Optimal parasite restriction by iNOS and vacuole nitration depended on the chromosome 3 GBPs. Notably, GBP2 recruitment and ruffling of the PV membrane occurred in iNOS knockouts, however, these vacuoles contained dividing parasites. iNOS activity was necessary for the collapse of the intravacuolar network of nanotubular membranes which connects parasites to each other and the host cytosol. Based on these data we conclude reactive nitrogen species generated by iNOS cooperate with the chromosome 3 GBPs to target distinct biology of the PV that are necessary for optimal parasite clearance in murine myeloid cells.
是一种专性细胞内的原生动物病原体,可感染啮齿动物和人类。其在细胞内生长并逃避细胞自主免疫的能力取决于寄生泡(PV)的完整性。干扰素诱导的鸟苷酸结合蛋白(GBPs)是清除病原体的核心介质,然而,将GBP募集到PV并进行限制的精确机制尚不清楚。这一知识空白与不同空泡群体中GBP靶向的异质性以及缺乏选择性纯化完整PV的工具有关。为了鉴定与GBP2阳性空泡相关的寄生虫清除介质,我们采用了一种新型蛋白质发现工具——自动空间靶向光学显微蛋白质组学(autoSTOMP)。该方法鉴定出诱导型一氧化氮合酶(iNOS)在感染的骨髓来源髓样细胞中的富集水平与GBPs相似。髓样细胞上的iNOS表达对于小鼠在体内控制其生长和在急性感染中存活是必要的。用IFNγ预处理巨噬细胞后进行感染足以强烈诱导iNOS表达。iNOS通过一氧化氮合成而非精氨酸消耗来限制感染,导致PV发生强烈且选择性的硝化。iNOS对寄生虫的最佳限制和空泡硝化取决于3号染色体上的GBPs。值得注意的是,在iNOS基因敲除小鼠中,GBP2会募集到PV并使其膜发生褶皱,然而,这些空泡中含有正在分裂的寄生虫。iNOS活性对于连接寄生虫彼此以及与宿主细胞质的纳米管膜内泡网络的塌陷是必要的。基于这些数据,我们得出结论,iNOS产生的活性氮物种与3号染色体上的GBPs协同作用,以靶向PV的不同生物学特性,这些特性对于小鼠髓样细胞中最佳的寄生虫清除是必要的。