Liu Ruixiang
Nanchang Normal University, Nanchang, China.
PeerJ Comput Sci. 2023 Jul 21;9:e1436. doi: 10.7717/peerj-cs.1436. eCollection 2023.
Given the rise of the tourism industry, there is an increasing urgency among tourists to access information about various tourist attractions. To address this challenge, innovative solutions have emerged, utilizing recommendation algorithms to offer customers personalized product recommendations. Nonetheless, existing recommendation algorithms predominantly rely on textual data, which is insufficient to harness the full potential of online tourism data. The most valuable tourism information is often found in the multi-modal data on social media, characterized by its voluminous and content-rich nature. Against this backdrop, our article posits a groundbreaking travel recommendation algorithm that leverages multi-modal data mining techniques. The proposed algorithm uses a travel recommendation platform, designed using multi-vector word sense segmentation and multi-modal data fusion, to improve the recommendation performance by introducing topic words. In our final experimental comparison, we verify the recommendation performance of the proposed algorithm on the real data set of TripAdvisor. Our proposed algorithm has the best degree of confusion with various topics. With a LOP of 20, the Precision and MAP values reach 0.0026 and 0.0089, respectively. It has the potential to better serve the tourism industry in terms of tourist destination recommendations. It can effectively mine the multi-modal data of the tourism industry to generate more excellent economic and social value.
随着旅游业的兴起,游客获取各类旅游景点信息的需求日益迫切。为应对这一挑战,创新解决方案应运而生,利用推荐算法为客户提供个性化的产品推荐。然而,现有的推荐算法主要依赖文本数据,不足以充分挖掘在线旅游数据的潜力。最有价值的旅游信息往往存在于社交媒体的多模态数据中,其特点是数量庞大且内容丰富。在此背景下,我们的文章提出了一种开创性的旅游推荐算法,该算法利用多模态数据挖掘技术。所提出的算法使用一个旅游推荐平台,该平台采用多向量词义分割和多模态数据融合设计,通过引入主题词来提高推荐性能。在最后的实验比较中,我们在猫途鹰的真实数据集上验证了所提出算法的推荐性能。我们提出的算法在各个主题上具有最佳的混淆度。在LOP为20时,精确率和平均准确率分别达到0.0026和0.0089。它有潜力在旅游目的地推荐方面更好地服务于旅游业。它可以有效地挖掘旅游业的多模态数据,以产生更多卓越的经济和社会价值。