Suppr超能文献

基于多模态和多向量数据挖掘的旅行推荐算法的开发。

Development of a travel recommendation algorithm based on multi-modal and multi-vector data mining.

作者信息

Liu Ruixiang

机构信息

Nanchang Normal University, Nanchang, China.

出版信息

PeerJ Comput Sci. 2023 Jul 21;9:e1436. doi: 10.7717/peerj-cs.1436. eCollection 2023.

Abstract

Given the rise of the tourism industry, there is an increasing urgency among tourists to access information about various tourist attractions. To address this challenge, innovative solutions have emerged, utilizing recommendation algorithms to offer customers personalized product recommendations. Nonetheless, existing recommendation algorithms predominantly rely on textual data, which is insufficient to harness the full potential of online tourism data. The most valuable tourism information is often found in the multi-modal data on social media, characterized by its voluminous and content-rich nature. Against this backdrop, our article posits a groundbreaking travel recommendation algorithm that leverages multi-modal data mining techniques. The proposed algorithm uses a travel recommendation platform, designed using multi-vector word sense segmentation and multi-modal data fusion, to improve the recommendation performance by introducing topic words. In our final experimental comparison, we verify the recommendation performance of the proposed algorithm on the real data set of TripAdvisor. Our proposed algorithm has the best degree of confusion with various topics. With a LOP of 20, the Precision and MAP values reach 0.0026 and 0.0089, respectively. It has the potential to better serve the tourism industry in terms of tourist destination recommendations. It can effectively mine the multi-modal data of the tourism industry to generate more excellent economic and social value.

摘要

随着旅游业的兴起,游客获取各类旅游景点信息的需求日益迫切。为应对这一挑战,创新解决方案应运而生,利用推荐算法为客户提供个性化的产品推荐。然而,现有的推荐算法主要依赖文本数据,不足以充分挖掘在线旅游数据的潜力。最有价值的旅游信息往往存在于社交媒体的多模态数据中,其特点是数量庞大且内容丰富。在此背景下,我们的文章提出了一种开创性的旅游推荐算法,该算法利用多模态数据挖掘技术。所提出的算法使用一个旅游推荐平台,该平台采用多向量词义分割和多模态数据融合设计,通过引入主题词来提高推荐性能。在最后的实验比较中,我们在猫途鹰的真实数据集上验证了所提出算法的推荐性能。我们提出的算法在各个主题上具有最佳的混淆度。在LOP为20时,精确率和平均准确率分别达到0.0026和0.0089。它有潜力在旅游目的地推荐方面更好地服务于旅游业。它可以有效地挖掘旅游业的多模态数据,以产生更多卓越的经济和社会价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a62/10403186/687b424bd233/peerj-cs-09-1436-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验