Fink Wolfgang, Fuhrman Connor, Zuniga Andres Nuncio, Tarbell Mark
Visual and Autonomous Exploration Systems Research Laboratory, College of Engineering, University of Arizona, Tucson, AZ 85721, USA.
Adv Space Res. 2023 Jul 15;72(2):518-528. doi: 10.1016/j.asr.2023.02.012. Epub 2023 Feb 11.
We introduce a dynamically deployed communication network (DDCN) paradigm using mesh topology in support of a distributed robotic multi-agent approach for the autonomous exploration of subsurface environments, i.e., caves, lava tube caves, lakes, and oceans, etc. The DDCN, comprising wireless communication beacons autonomously deployed via a rover or submersible in a Hansel & Gretel-inspired breadcrumb style, allows for the longest and most robust communication link between subterranean robotic agent(s) within, e.g., a lave tube cave or a subsurface ocean, and associated surface-borne robotic agent(s). Moreover, we briefly touch on the development of a robotic testbed and wired/wireless communication beacons in support of such astrobiological surface/subsurface exploration scenarios. Candidate lava tube caves have been identified on the Moon and Mars, raising possibilities for planetary exploration, astrobiology, habitat construction for future astronauts, and potential mining operations. Subterranean caverns, and in particular relatively deep lava tube caves, provide a possible refuge for life under otherwise challenging planetary surface conditions, and, as such, are of prime astrobiological relevance. Lava tube caves or other subsurface environments may also be suitable habitats for astronauts and subsequent human settlement but are yet to be explored in part due to difficulties ensuring continued communication with a robotic probe inside these environments. Moreover, the existence of subsurface oceans on ocean worlds, such as Europa, Enceladus, and Titan, has been backed by varying levels of evidence since the 1980s, though there has been no confirmation, i.e., direct observation, thus far. Such environments are also shielded from radiation, and, in combination with the hypothesized presence of water, are additional candidate environments for finding extant or fossilized life. The DDCN paradigm introduced herein directly addresses NASA's Space Technology Grand Challenges - "All Access Mobility" by enabling the most unconstrained exploration of subsurface environments through a dynamic communication network which ensures transmission of data from and possibly commands to the subsurface robotic probe. 2023 COSPAR. Published by Elsevier B.V. All rights reserved.
我们引入一种采用网状拓扑的动态部署通信网络(DDCN)范式,以支持用于地下环境(如洞穴、熔岩管洞穴、湖泊和海洋等)自主探索的分布式机器人多智能体方法。DDCN由无线通信信标组成,这些信标通过漫游车或潜水器以受《韩塞尔与葛雷特》启发的面包屑方式自主部署,可在例如熔岩管洞穴或地下海洋中的地下机器人智能体与相关的地面机器人智能体之间建立最长且最稳定的通信链路。此外,我们简要介绍了一个机器人测试平台以及有线/无线通信信标的开发情况,以支持此类天体生物学的地面/地下探索场景。在月球和火星上已确定了候选熔岩管洞穴,这增加了进行行星探索、天体生物学研究、为未来宇航员建造栖息地以及开展潜在采矿作业的可能性。地下洞穴,特别是相对较深的熔岩管洞穴,在其他具有挑战性的行星表面条件下为生命提供了可能的避难所,因此具有重要的天体生物学意义。熔岩管洞穴或其他地下环境也可能是宇航员和后续人类定居的合适栖息地,但部分原因是难以确保与这些环境中的机器人探测器持续通信,所以尚未得到充分探索。此外,自20世纪80年代以来,木卫二、土卫二和土卫六等海洋世界存在地下海洋的说法得到了不同程度的证据支持,但迄今为止尚未得到证实,即尚未直接观测到。此类环境还能免受辐射影响,并且结合假设存在的水,是寻找现存或化石生命的额外候选环境。本文介绍的DDCN范式直接应对了美国国家航空航天局的太空技术重大挑战——“全方位移动性”,通过动态通信网络实现对地下环境的最无约束探索,确保从地下机器人探测器传输数据以及可能向其发送指令。版权所有2XXX年空间研究委员会。由爱思唯尔有限公司出版。保留所有权利。