Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
Biochem J. 2023 Aug 30;480(16):1267-1284. doi: 10.1042/BCJ20230233.
The development of biocatalysts requires reorganization of the enzyme's active site to facilitate the productive binding of the target substrate and improve turnover number at desired conditions. Pyridoxal-5'-phosphate (PLP) - dependent transaminases are highly efficient biocatalysts for asymmetric amination of ketones and keto acids. However, transaminases, being stereoselective enzymes, have a narrow substrate specificity due to the ordered structure of the active site and work only in neutral-alkaline media. Here, we investigated the d-amino acid transaminase from Aminobacterium colombiense, with the active site organized differently from that of the canonical d-amino acid transaminase from Bacillus sp. YM-1. Using a combination of site-directed mutagenesis, kinetic analysis, molecular modeling, and structural analysis we determined the active site residues responsible for substrate binding, substrate differentiation, thermostability of a functional dimer, and affecting the pH optimum. We demonstrated that the high specificity toward d-glutamate/α-ketoglutarate is due to the interactions of a γ-carboxylate group with K237 residue, while binding of other substrates stems from the effectiveness of their accommodation in the active site optimized for d-glutamate/α-ketoglutarate binding. Furthermore, we showed that the K237A substitution shifts the catalytic activity optimum to acidic pH. Our findings are useful for achieving target substrate specificity and demonstrate the potential for developing and optimizing transaminases for various applications.
生物催化剂的开发需要重新组织酶的活性部位,以促进目标底物的生产性结合,并在所需条件下提高周转率。吡哆醛-5'-磷酸(PLP)依赖性转氨酶是酮和酮酸不对称氨化的高效生物催化剂。然而,由于活性部位的有序结构,转氨酶作为立体选择性酶,具有较窄的底物特异性,仅在中性-碱性介质中起作用。在这里,我们研究了来自哥伦比亚氨杆菌的 D-氨基酸转氨酶,其活性部位的组织方式与来自芽孢杆菌 YM-1 的典型 D-氨基酸转氨酶不同。我们通过组合定点突变、动力学分析、分子建模和结构分析,确定了负责底物结合、底物分化、功能二聚体热稳定性和影响 pH 最优值的活性部位残基。我们证明了对 D-谷氨酸/α-酮戊二酸的高特异性是由于γ-羧酸盐与 K237 残基的相互作用,而其他底物的结合则源于其在优化为 D-谷氨酸/α-酮戊二酸结合的活性部位中的有效容纳。此外,我们表明 K237A 取代将催化活性最优值转移到酸性 pH 值。我们的发现对于实现目标底物特异性很有用,并展示了开发和优化用于各种应用的转氨酶的潜力。