Suppr超能文献

利用人工智能进行蛋白质测序:集成机器学习的磷烯纳米狭缝

Protein Sequencing with Artificial Intelligence: Machine Learning Integrated Phosphorene Nanoslit.

作者信息

Mittal Sneha, Jena Milan Kumar, Pathak Biswarup

机构信息

Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India.

出版信息

Chemistry. 2023 Oct 23;29(59):e202301667. doi: 10.1002/chem.202301667. Epub 2023 Sep 21.

Abstract

Achieving high throughput protein sequencing at single molecule resolution remains a daunting challenge. Herein, relying on a solid-state 2D phosphorene nanoslit device, an extraordinary biosensor to rapidly identify the key signatures of all twenty amino acids using an interpretable machine learning (ML) model is reported. The XGBoost regression algorithm allows the determination of the transmission function of all twenty amino acids with high accuracy. The resultant ML and DFT studies reveal that it is possible to identify individual amino acids through transmission and current signals readouts with high sensitivity and selectivity. Moreover, we thoroughly compared our results to those from graphene nanoslit and found that the phosphorene nanoslit device can be an ideal candidate for protein sequencing up to a 20-fold increase in transmission sensitivity. The present study facilitates high throughput screening of all twenty amino acids and can be further extended to other biomolecules for disease diagnosis and therapeutic decision making.

摘要

在单分子分辨率下实现高通量蛋白质测序仍然是一项艰巨的挑战。在此,依托固态二维磷烯纳米狭缝器件,报道了一种非凡的生物传感器,该传感器利用可解释的机器学习(ML)模型快速识别所有二十种氨基酸的关键特征。XGBoost回归算法能够高精度地确定所有二十种氨基酸的传输函数。由此产生的ML和DFT研究表明,通过传输和电流信号读数以高灵敏度和选择性识别单个氨基酸是可能的。此外,我们将我们的结果与石墨烯纳米狭缝的结果进行了全面比较,发现磷烯纳米狭缝器件可以成为蛋白质测序的理想候选者,其传输灵敏度提高了20倍。本研究有助于对所有二十种氨基酸进行高通量筛选,并且可以进一步扩展到其他生物分子用于疾病诊断和治疗决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验