Suppr超能文献

基于对抗风格迁移的合成 EMG 可有效攻击基于生物特征的身份识别模型。

Synthetic EMG Based on Adversarial Style Transfer Can Effectively Attack Biometric-Based Personal Identification Models.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:3275-3284. doi: 10.1109/TNSRE.2023.3303316. Epub 2023 Aug 18.

Abstract

Biometric-based personal identification models are generally considered to be accurate and secure because biological signals are too complex and person-specific to be fabricated, and EMG signals, in particular, have been used as biological identification tokens due to their high dimension and non-linearity. We investigate the possibility of effectively attacking EMG-based identification models with adversarial biological input via a novel EMG signal individual-style transformer based on a generative adversarial network and tiny leaked data segments. Since two same EMG segments do not exist in nature; the leaked data can't be used to attack the model directly or it will be easily detected. Therefore, it is necessary to extract the style with the leaked personal signals and generate the attack signals with different contents. With our proposed method and tiny leaked personal EMG fragments, numerous EMG signals with different content can be generated in that person's style. EMG hand gesture data from eighteen subjects and three well-recognized deep EMG classifiers were used to demonstrate the effectiveness of the proposed attack methods. The proposed methods achieved an average of 99.41% success rate on confusing identification models and an average of 91.51% success rate on manipulating identification models. These results demonstrate that EMG classifiers based on deep neural networks can be vulnerable to synthetic data attacks. The proof-of-concept results reveal that synthetic EMG biological signals must be considered in biological identification system design across a vast array of relevant biometric systems to ensure personal identification security for individuals and institutions.

摘要

基于生物特征的个人身份识别模型通常被认为是准确和安全的,因为生物信号非常复杂且具有个体特异性,难以伪造,特别是肌电图 (EMG) 信号,由于其高维度和非线性,已被用作生物识别令牌。我们通过一种基于生成对抗网络和微小泄漏数据片段的新型 EMG 信号个体风格转换器,研究了通过对抗性生物输入有效攻击基于 EMG 的识别模型的可能性。由于自然界中不存在两个相同的 EMG 段,因此无法直接使用泄漏数据来攻击模型,否则很容易被检测到。因此,有必要提取具有泄漏个人信号的风格,并使用不同的内容生成攻击信号。使用我们提出的方法和微小的泄漏个人 EMG 片段,可以生成具有不同内容的大量该人风格的 EMG 信号。使用来自十八个主题和三个公认的深度 EMG 分类器的 EMG 手势数据,证明了所提出的攻击方法的有效性。所提出的方法在混淆识别模型方面的成功率平均为 99.41%,在操纵识别模型方面的成功率平均为 91.51%。这些结果表明,基于深度神经网络的 EMG 分类器容易受到合成数据攻击。概念验证结果表明,在生物识别系统设计中必须考虑合成 EMG 生物信号,以确保个人和机构的个人识别安全,涉及到广泛的相关生物识别系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验