Suppr超能文献

转录因子PbbZIP4被泛素连接酶PbATL18靶向进行蛋白酶体介导的降解,以通过调节PbNPR3的表达来影响梨对果生炭疽菌的抗性。

Transcription factor PbbZIP4 is targeted for proteasome-mediated degradation by the ubiquitin ligase PbATL18 to influence pear's resistance to Colletotrichum fructicola by regulating the expression of PbNPR3.

作者信息

Lin Likun, Yuan Kaili, Xing Caihua, Qiao Qinghai, Chen Qiming, Dong Huizhen, Qi Kaijie, Xie Zhihua, Chen Xianchu, Huang Xiaosan, Zhang Shaoling

机构信息

State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.

出版信息

Plant J. 2023 Nov;116(3):903-920. doi: 10.1111/tpj.16417. Epub 2023 Aug 7.

Abstract

Pear anthracnose caused by Colletotrichum fructicola is one of the main fungal diseases in all pear-producing areas. The degradation of ubiquitinated proteins by the 26S proteasome is a regulatory mechanism of eukaryotes. E3 ubiquitin ligase is substrate specific and is one of the most diversified and abundant enzymes in the regulation mechanism of plant ubiquitination. Although numerous studies in other plants have shown that the degradation of ubiquitinated proteins by the 26S proteasome is closely related to plant immunity, there are limited studies on them in pear trees. Here, we found that an E3 ubiquitin ligase, PbATL18, interacts with and ubiquitinates the transcription factor PbbZIP4, and this process is enhanced by C. fructicola infection. PbATL18 overexpression in pear callus enhanced resistance to C. fructicola infection, whereas PbbZIP4 overexpression increased sensitivity to C. fructicola infection. Silencing PbATL18 and PbbZIP4 in Pyrus betulaefolia seedlings resulted in opposite effects, with PbbZIP4 silencing enhancing resistance to C. fructicola infection and PbATL18 silencing increasing sensitivity to C. fructicola infection. Using yeast one-hybrid screens, an electrophoretic mobility shift assay, and dual-luciferase assays, we demonstrated that the transcription factor PbbZIP4 upregulated the expression of PbNPR3 by directly binding to its promoter. PbNPR3 is one of the key genes in the salicylic acid (SA) signal transduction pathway that can inhibit SA signal transduction. Here, we proposed a PbATL18-PbbZIP4-PbNPR3-SA model for plant response to C. fructicola infection. PbbZIP4 was ubiquitinated by PbATL18 and degraded by the 26S proteasome, which decreased the expression of PbNPR3 and promoted SA signal transduction, thereby enhancing plant C. fructicola resistance. Our study provides new insights into the molecular mechanism of pear response to C. fructicola infection, which can serve as a theoretical basis for breeding superior disease-resistant pear varieties.

摘要

由胶孢炭疽菌引起的梨炭疽病是所有梨产区的主要真菌病害之一。26S蛋白酶体对泛素化蛋白的降解是真核生物的一种调控机制。E3泛素连接酶具有底物特异性,是植物泛素化调控机制中最多样化且最丰富的酶之一。尽管在其他植物中的大量研究表明,26S蛋白酶体对泛素化蛋白的降解与植物免疫密切相关,但在梨树中对其研究有限。在此,我们发现一种E3泛素连接酶PbATL18与转录因子PbbZIP4相互作用并使其泛素化,且该过程在胶孢炭疽菌感染时增强。在梨愈伤组织中过表达PbATL18增强了对胶孢炭疽菌感染的抗性,而PbbZIP4过表达则增加了对胶孢炭疽菌感染的敏感性。在杜梨幼苗中沉默PbATL18和PbbZIP4产生了相反的效果,PbbZIP4沉默增强了对胶孢炭疽菌感染的抗性,而PbATL18沉默则增加了对胶孢炭疽菌感染的敏感性。通过酵母单杂交筛选、电泳迁移率变动分析和双荧光素酶分析,我们证明转录因子PbbZIP4通过直接结合其启动子上调PbNPR3的表达。PbNPR3是水杨酸(SA)信号转导途径中的关键基因之一,可抑制SA信号转导。在此,我们提出了一个植物对胶孢炭疽菌感染响应的PbATL18 - PbbZIP4 - PbNPR3 - SA模型。PbbZIP4被PbATL18泛素化并被26S蛋白酶体降解,这降低了PbNPR3的表达并促进SA信号转导,从而增强植物对胶孢炭疽菌的抗性。我们的研究为梨树对胶孢炭疽菌感染响应的分子机制提供了新见解,可为培育优良抗病梨品种提供理论依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验