Suppr超能文献

基于人工智能和计算化学方法的命中鉴定:PI5P4K-β 案例研究。

Hit Identification Driven by Combining Artificial Intelligence and Computational Chemistry Methods: A PI5P4K-β Case Study.

机构信息

Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China.

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

出版信息

J Chem Inf Model. 2023 Aug 28;63(16):5341-5355. doi: 10.1021/acs.jcim.3c00543. Epub 2023 Aug 7.

Abstract

Computer-aided drug design (CADD), especially artificial intelligence-driven drug design (AIDD), is increasingly used in drug discovery. In this paper, a novel and efficient workflow for hit identification was developed within the drug discovery platform, featuring innovative artificial intelligence, high-accuracy computational chemistry, and high-performance cloud computing. The workflow was validated by discovering a few potent hit compounds (best IC is ∼0.80 μM) against PI5P4K-β, a novel anti-cancer target. Furthermore, by applying the tools implemented in , we managed to optimize these hit compounds and finally obtained five hit series with different scaffolds, all of which showed high activity against PI5P4K-β. These results demonstrate the effectiveness of in driving hit identification based on artificial intelligence, computational chemistry, and cloud computing.

摘要

计算机辅助药物设计(CADD),特别是人工智能驱动的药物设计(AIDD),在药物发现中越来越多地被使用。在本文中,我们在药物发现平台内开发了一种新颖且高效的命中鉴定工作流程,其特点是创新性的人工智能、高精度计算化学和高性能云计算。该工作流程通过发现针对 PI5P4K-β(一种新型抗癌靶标)的几个有效命中化合物(最佳 IC 为∼0.80 μM)得到验证。此外,通过应用 中实现的工具,我们成功优化了这些命中化合物,最终得到了五个具有不同骨架的命中化合物系列,它们均对 PI5P4K-β 表现出高活性。这些结果表明 基于人工智能、计算化学和云计算进行命中鉴定的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验