Suppr超能文献

使用可解释的增强算法对环境和农业数据进行建模。

Using interpretable boosting algorithms for modeling environmental and agricultural data.

作者信息

Obster Fabian, Heumann Christian, Bohle Heidi, Pechan Paul

机构信息

Department of Business Administration, University of the Bundeswehr Munich, 85577, Neubiberg, Germany.

Department of Statistics, LMU Munich, 80539, Munich, Germany.

出版信息

Sci Rep. 2023 Aug 7;13(1):12767. doi: 10.1038/s41598-023-39918-5.

Abstract

We describe how interpretable boosting algorithms based on ridge-regularized generalized linear models can be used to analyze high-dimensional environmental data. We illustrate this by using environmental, social, human and biophysical data to predict the financial vulnerability of farmers in Chile and Tunisia against climate hazards. We show how group structures can be considered and how interactions can be found in high-dimensional datasets using a novel 2-step boosting approach. The advantages and efficacy of the proposed method are shown and discussed. Results indicate that the presence of interaction effects only improves predictive power when included in two-step boosting. The most important variable in predicting all types of vulnerabilities are natural assets. Other important variables are the type of irrigation, economic assets and the presence of crop damage of near farms.

摘要

我们描述了基于岭正则化广义线性模型的可解释性增强算法如何用于分析高维环境数据。我们通过使用环境、社会、人类和生物物理数据来预测智利和突尼斯农民面对气候灾害时的金融脆弱性,对此进行了说明。我们展示了如何考虑组结构,以及如何使用一种新颖的两步增强方法在高维数据集中找到相互作用。展示并讨论了所提出方法的优点和功效。结果表明,只有在两步增强中包含交互效应时,其才会提高预测能力。预测所有类型脆弱性的最重要变量是自然资产。其他重要变量包括灌溉类型、经济资产以及农场附近作物受损情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2aa/10406907/34dbd98f0055/41598_2023_39918_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验