Suppr超能文献

合成动作电位迹线变异性和不确定性的分层贝叶斯建模

Hierarchical Bayesian Modelling of Variability and Uncertainty in Synthetic Action Potential Traces.

作者信息

Johnstone Ross H, Bardenet Rémi, Gavaghan David J, Polonchuk Liudmila, Davies Mark R, Mirams Gary R

机构信息

Computational Biology, Dept. of Computer Science, University of Oxford, Oxford, UK.

CNRS & CRIStAL, Université de Lille, Lille, France.

出版信息

Comput Cardiol (2010). 2016 Sep;43:1089-1092. doi: 10.22489/CinC.2016.313-458.

Abstract

There are many sources of uncertainty in the recording and modelling of membrane action potentials (APs) from cardiomyocytes. For example, there are measurement, parameter, and model uncertainties. There is also extrinsic variability between cells, and intrinsic beat-to-beat variability within a single cell. These combined uncertainties and variability make it very difficult to extrapolate predictions from these models, since current AP models have single parameter values and thus produce a single AP trace. We aim to re-parameterise existing AP models to fit experimental data, and to quantify uncertainty associated with ion current densities when measuring and modelling these APs. We then wish to propagate this uncertainty into model predictions, such as ion channel block effected by a pharmaceutical compound. We perform an in silico study using synthetic data generated from different sets of parameters. We then 'forget' these parameter values and re-infer their distributions using hierarchical Markov chain Monte Carlo methods. We find that we can successfully infer the 'correct' distributions for most ion current densities for each AP trace, along with an approximation to the higher-level distribution from which these parameter values were sampled. There is, however, some level of unidentifiability amongst some of the current densities.

摘要

在记录和模拟心肌细胞的膜动作电位(APs)时存在许多不确定性来源。例如,存在测量、参数和模型不确定性。细胞之间也存在外在变异性,单个细胞内还存在内在的逐搏变异性。这些综合的不确定性和变异性使得从这些模型推断预测结果变得非常困难,因为当前的AP模型具有单一参数值,因此只能产生单一的AP轨迹。我们旨在对现有的AP模型进行重新参数化以拟合实验数据,并在测量和模拟这些APs时量化与离子电流密度相关的不确定性。然后,我们希望将这种不确定性传播到模型预测中,例如药物化合物对离子通道的阻滞作用。我们使用从不同参数集生成的合成数据进行了一项计算机模拟研究。然后我们“忘记”这些参数值,并使用分层马尔可夫链蒙特卡罗方法重新推断它们的分布。我们发现,对于每个AP轨迹,我们能够成功推断出大多数离子电流密度的“正确”分布,以及对从中采样这些参数值的更高层次分布的近似。然而,在某些电流密度之间存在一定程度的不可识别性。

相似文献

3
Reducing complexity and unidentifiability when modelling human atrial cells.在对人心房细胞建模时,减少复杂性和可识别性。
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190339. doi: 10.1098/rsta.2019.0339. Epub 2020 May 25.

引用本文的文献

本文引用的文献

7
The CellML Model Repository.细胞标记语言(CellML)模型库
Bioinformatics. 2008 Sep 15;24(18):2122-3. doi: 10.1093/bioinformatics/btn390. Epub 2008 Jul 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验