Suppr超能文献

空陆转换:从无翅动物和植物种子到羽毛球和仿生机器人。

Air-to-land transitions: from wingless animals and plant seeds to shuttlecocks and bio-inspired robots.

机构信息

School of Biology and Ecology, University of Maine, Orono, ME 04469, United States of America.

Soft Kinetic Group, Engineering Sciences Department, Empa Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, Dübendorf 8600, Switzerland.

出版信息

Bioinspir Biomim. 2023 Aug 8;18(5). doi: 10.1088/1748-3190/acdb1c.

Abstract

Recent observations of wingless animals, including jumping nematodes, springtails, insects, and wingless vertebrates like geckos, snakes, and salamanders, have shown that their adaptations and body morphing are essential for rapid self-righting and controlled landing. These skills can reduce the risk of physical damage during collision, minimize recoil during landing, and allow for a quick escape response to minimize predation risk. The size, mass distribution, and speed of an animal determine its self-righting method, with larger animals depending on the conservation of angular momentum and smaller animals primarily using aerodynamic forces. Many animals falling through the air, from nematodes to salamanders, adopt a skydiving posture while descending. Similarly, plant seeds such as dandelions and samaras are able to turn upright in mid-air using aerodynamic forces and produce high decelerations. These aerial capabilities allow for a wide dispersal range, low-impact collisions, and effective landing and settling. Recently, small robots that can right themselves for controlled landings have been designed based on principles of aerial maneuvering in animals. Further research into the effects of unsteady flows on self-righting and landing in small arthropods, particularly those exhibiting explosive catapulting, could reveal how morphological features, flow dynamics, and physical mechanisms contribute to effective mid-air control. More broadly, studying apterygote (wingless insects) landing could also provide insight into the origin of insect flight. These research efforts have the potential to lead to the bio-inspired design of aerial micro-vehicles, sports projectiles, parachutes, and impulsive robots that can land upright in unsteady flow conditions.

摘要

最近对无翅动物的观察,包括跳跃线虫、弹尾目昆虫、无翅脊椎动物如壁虎、蛇和蝾螈,表明它们的适应性和身体变形对于快速自我扶正和受控着陆至关重要。这些技能可以降低碰撞时身体受伤的风险,最小化着陆时的后坐力,并能快速做出逃避反应,以最大限度地降低被捕食的风险。动物的大小、质量分布和速度决定了其自我扶正的方法,较大的动物依赖于角动量的守恒,而较小的动物主要利用空气动力。许多在空中坠落的动物,从线虫到蝾螈,在下降过程中都会采取跳伞的姿势。同样,蒲公英和翅果等植物种子也能够利用空气动力在半空中翻转并产生高减速度。这些空中能力使它们能够进行广泛的扩散、低冲击力的碰撞以及有效着陆和降落。最近,已经根据动物在空中机动的原理设计了能够自我扶正以进行受控着陆的小型机器人。进一步研究不稳定流对小型节肢动物自我扶正和着陆的影响,特别是对那些表现出爆发性弹射的动物,可能揭示形态特征、流动力学和物理机制如何有助于有效地在空中进行控制。更广泛地说,研究无翅昆虫的着陆也可以深入了解昆虫飞行的起源。这些研究工作有可能导致对空中微型飞行器、运动弹丸、降落伞和在不稳定流条件下能够垂直着陆的脉冲机器人的仿生设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验