Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.
Brain Pathol. 2024 May;34(3):e13207. doi: 10.1111/bpa.13207. Epub 2023 Aug 8.
This study explores the utility of the large language models (LLMs), specifically ChatGPT and Google Bard, in predicting neuropathologic diagnoses from clinical summaries. A total of 25 cases of neurodegenerative disorders presented at Mayo Clinic brain bank Clinico-Pathological Conferences were analyzed. The LLMs provided multiple pathologic diagnoses and their rationales, which were compared with the final clinical diagnoses made by physicians. ChatGPT-3.5, ChatGPT-4, and Google Bard correctly made primary diagnoses in 32%, 52%, and 40% of cases, respectively, while correct diagnoses were included in 76%, 84%, and 76% of cases, respectively. These findings highlight the potential of artificial intelligence tools like ChatGPT in neuropathology, suggesting they may facilitate more comprehensive discussions in clinicopathological conferences.
这项研究探讨了大型语言模型(LLMs),特别是 ChatGPT 和 Google Bard,在从临床总结中预测神经病理诊断方面的效用。总共分析了 25 例在梅奥诊所脑库临床病理会议上呈现的神经退行性疾病病例。LLMs 提供了多种病理诊断及其理由,并与医生做出的最终临床诊断进行了比较。ChatGPT-3.5、ChatGPT-4 和 Google Bard 分别正确做出了 32%、52%和 40%的主要诊断,而正确诊断分别包含在 76%、84%和 76%的病例中。这些发现强调了像 ChatGPT 这样的人工智能工具在神经病理学中的潜力,表明它们可能有助于在临床病理会议上进行更全面的讨论。