Suppr超能文献

由回收的聚氨酯二醇解产物合成 Vitrimer

Vitrimer synthesis from recycled polyurethane gylcolysate.

作者信息

Lin Yu-Hsuan, Chen-Huang Yun-Lin, Chang Alex C-C

机构信息

Chemical Engineering Department, Feng Chia University, Taichung, Taiwan.

Green Energy and Biotechnology Industry Research Center, Feng Chia University, Taichung, Taiwan.

出版信息

Front Bioeng Biotechnol. 2023 Jul 24;11:1209294. doi: 10.3389/fbioe.2023.1209294. eCollection 2023.

Abstract

Polyurethanes and plastics have become ubiquitous in modern society, finding use in a wide variety of applications such as clothing, automobiles, and shoes. While these materials provide numerous benefits to human life, their persistence in the environment has caused ecological imbalances. Therefore, new processes are needed to make these materials more sustainable and re-usable. In 2011, Ludwik Leibler introduced a new class of covalent adaptable network (CAN) polymers called Vitrimers. Vitrimers possess self-repairing properties and are capable of being reprocessed due to dynamic exchange or breaking/recombination of covalent bonds, similar to thermoset materials. This study explores the synthesis of Vitrimers using waste polyurethane or plastics as feedstock. The raw materials were glycolysed to obtain the glycolysate, which was then used as a reagent for the Vitrimers synthesis. The main objective of this study was to achieve the maximum self-repairable rate of the prepared sample. The Taguchi orthogonal analysis was employed to guide the experiments. The optimized experimental conditions for polyurethane glycolysis were determined to be under ethylene glycol and catalyzed by sodium hydroxide at 180°C for 1 h, resulting in the highest hydroxyl concentration in the glycolysate. In the second stage of the experiment, the ratio of hexamethylene diisocyanate (HDI) to solvent was set to 2, HDI trimer to solvent was 2, and PGE/glycolysate was 0.5, with equal amounts of PEG and glycolysate used as the solvent. The reaction was carried out at 80°C for 1 h, achieving a self-repair ability of 47.5% in the prepared sample. The results of this study show that waste polyurethane or plastics can be effectively recycled and transformed into vitrimers with self-repairing properties. The use of glycolysis as a feedstock is a promising method for the sustainable recycling of polyurethane waste. The Taguchi orthogonal analysis is an effective approach for optimizing experimental conditions and improving the reproducibility of the results.

摘要

聚氨酯和塑料在现代社会中无处不在,广泛应用于服装、汽车和鞋子等各种领域。虽然这些材料给人类生活带来了诸多益处,但它们在环境中的持久性已导致生态失衡。因此,需要新的工艺使这些材料更具可持续性和可重复使用性。2011年,卢德维克·莱布勒引入了一类新型的共价适应性网络(CAN)聚合物,称为 Vitrimers。Vitrimers 具有自我修复特性,并且由于共价键的动态交换或断裂/重组,能够像热固性材料一样进行再加工。本研究探索了以废聚氨酯或塑料为原料合成 Vitrimers。将原料进行醇解以获得醇解产物,然后将其用作合成 Vitrimers 的试剂。本研究的主要目标是使制备的样品达到最大的自我修复率。采用田口正交分析来指导实验。确定聚氨酯醇解的优化实验条件为在乙二醇存在下,由氢氧化钠催化,于180°C反应1小时,从而使醇解产物中的羟基浓度最高。在实验的第二阶段,六亚甲基二异氰酸酯(HDI)与溶剂的比例设定为2,HDI 三聚体与溶剂的比例为2,聚甘油醚(PGE)/醇解产物为0.5,使用等量的聚乙二醇(PEG)和醇解产物作为溶剂。反应在80°C下进行1小时,制备的样品实现了47.5%的自我修复能力。本研究结果表明,废聚氨酯或塑料可以有效地回收利用,并转化为具有自我修复特性的 Vitrimers。将醇解用作原料是聚氨酯废料可持续回收的一种有前景的方法。田口正交分析是优化实验条件和提高结果重现性的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1313/10405921/f1b5c776705d/fbioe-11-1209294-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验