Suppr超能文献

利用随机森林机器学习预测无症状单侧颈动脉狭窄的血流动力学磁共振成像参数

Hemodynamic MRI parameters to predict asymptomatic unilateral carotid artery stenosis with random forest machine learning.

作者信息

Gleißner Carina, Kaczmarz Stephan, Kufer Jan, Schmitzer Lena, Kallmayer Michael, Zimmer Claus, Wiestler Benedikt, Preibisch Christine, Göttler Jens

机构信息

Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.

Philips GmbH Market DACH, Hamburg, Germany.

出版信息

Front Neuroimaging. 2023 Jan 12;1:1056503. doi: 10.3389/fnimg.2022.1056503. eCollection 2022.

Abstract

BACKGROUND

Internal carotid artery stenosis (ICAS) can cause stroke and cognitive decline. Associated hemodynamic impairments, which are most pronounced within individual watershed areas (iWSA) between vascular territories, can be assessed with hemodynamic-oxygenation-sensitive MRI and may help to detect severely affected patients. We aimed to identify the most sensitive parameters and volumes of interest (VOI) to predict high-grade ICAS with random forest machine learning. We hypothesized an increased predictive ability considering iWSAs and a decreased cognitive performance in correctly classified patients.

MATERIALS AND METHODS

Twenty-four patients with asymptomatic, unilateral, high-grade carotid artery stenosis and 24 age-matched healthy controls underwent MRI comprising pseudo-continuous arterial spin labeling (pCASL), breath-holding functional MRI (BH-fMRI), dynamic susceptibility contrast (DSC), T2 and T2 mapping, MPRAGE and FLAIR. Quantitative maps of eight perfusion, oxygenation and microvascular parameters were obtained. Mean values of respective parameters within and outside of iWSAs split into gray (GM) and white matter (WM) were calculated for both hemispheres and for interhemispheric differences resulting in 96 features. Random forest classifiers were trained on whole GM/WM VOIs, VOIs considering iWSAs and with additional feature selection, respectively.

RESULTS

The most sensitive features in decreasing order were time-to-peak (TTP), cerebral blood flow (CBF) and cerebral vascular reactivity (CVR), all of these inside of iWSAs. Applying iWSAs combined with feature selection yielded significantly higher receiver operating characteristics areas under the curve (AUC) than whole GM/WM VOIs (AUC: 0.84 vs. 0.90, = 0.039). Correctly predicted patients presented with worse cognitive performances than frequently misclassified patients (Trail-making-test B: 152.5s vs. 94.4s, = 0.034).

CONCLUSION

Random forest classifiers trained on multiparametric MRI data allow identification of the most relevant parameters and VOIs to predict ICAS, which may improve personalized treatments.

摘要

背景

颈内动脉狭窄(ICAS)可导致中风和认知功能下降。相关的血流动力学损害在血管区域之间的单个分水岭区域(iWSA)内最为明显,可通过血流动力学-氧合敏感磁共振成像(MRI)进行评估,这可能有助于检测严重受影响的患者。我们旨在通过随机森林机器学习确定预测重度ICAS最敏感的参数和感兴趣体积(VOI)。我们假设考虑iWSA时预测能力增强,且正确分类患者的认知表现下降。

材料与方法

24例无症状、单侧、重度颈动脉狭窄患者和24例年龄匹配的健康对照者接受了包括伪连续动脉自旋标记(pCASL)、屏气功能MRI(BH-fMRI)、动态磁敏感对比增强(DSC)、T2和T2图谱、MPRAGE和FLAIR的MRI检查。获得了八个灌注、氧合和微血管参数的定量图谱。计算了两个半球iWSA内外分为灰质(GM)和白质(WM)的各参数平均值以及半球间差异,从而得到96个特征。随机森林分类器分别在整个GM/WM VOI、考虑iWSA的VOI以及进行额外特征选择的情况下进行训练。

结果

按敏感度从高到低排序,最敏感的特征是达峰时间(TTP)、脑血流量(CBF)和脑血管反应性(CVR),所有这些均在iWSA内。应用iWSA并结合特征选择产生的曲线下受试者操作特征面积(AUC)显著高于整个GM/WM VOI(AUC:0.84对0.90,P = 0.039)。正确预测的患者比经常误分类的患者表现出更差的认知表现(连线测验B:152.5秒对94.4秒,P = 0.034)。

结论

基于多参数MRI数据训练的随机森林分类器能够识别预测ICAS最相关的参数和VOI,这可能改善个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6360/10406220/40aa4e2f626a/fnimg-01-1056503-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验