Suppr超能文献

基于质谱成像技术预测导管原位癌(DCIS)病变中的共存浸润性癌。

Prediction of coexisting invasive carcinoma on ductal carcinoma in situ (DCIS) lesions by mass spectrometry imaging.

机构信息

Department of Pathology and Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, PR China.

Key Laboratory of Transplant Engineering and Immunology of the National Health Commission, West China Hospital, Sichuan University, Chengdu, PR China.

出版信息

J Pathol. 2023 Oct;261(2):125-138. doi: 10.1002/path.6154. Epub 2023 Aug 9.

Abstract

Due to limited biopsy samples, ~20% of DCIS lesions confirmed by biopsy are upgraded to invasive ductal carcinoma (IDC) upon surgical resection. Avoiding underestimation of IDC when diagnosing DCIS has become an urgent challenge in an era discouraging overtreatment of DCIS. In this study, the metabolic profiles of 284 fresh frozen breast samples, including tumor tissues and adjacent benign tissues (ABTs) and distant surrounding tissues (DSTs), were analyzed using desorption electrospray ionization-mass spectrometry (DESI-MS) imaging. Metabolomics analysis using DESI-MS data revealed significant differences in metabolite levels, including small-molecule antioxidants, long-chain polyunsaturated fatty acids (PUFAs) and phospholipids between pure DCIS and IDC. However, the metabolic profile in DCIS with invasive carcinoma components clearly shifts to be closer to adjacent IDC components. For instance, DCIS with invasive carcinoma components showed lower levels of antioxidants and higher levels of free fatty acids compared to pure DCIS. Furthermore, the accumulation of long-chain PUFAs and the phosphatidylinositols (PIs) containing PUFA residues may also be associated with the progression of DCIS. These distinctive metabolic characteristics may offer valuable indications for investigating the malignant potential of DCIS. By combining DESI-MS data with machine learning (ML) methods, various breast lesions were discriminated. Importantly, the pure DCIS components were successfully distinguished from the DCIS components in samples with invasion in postoperative specimens by a Lasso prediction model, achieving an AUC value of 0.851. In addition, pixel-level prediction based on DESI-MS data enabled automatic visualization of tissue properties across whole tissue sections. Summarily, DESI-MS imaging on histopathological sections can provide abundant metabolic information about breast lesions. By analyzing the spatial metabolic characteristics in tissue sections, this technology has the potential to facilitate accurate diagnosis and individualized treatment of DCIS by inferring the presence of IDC components surrounding DCIS lesions. © 2023 The Pathological Society of Great Britain and Ireland.

摘要

由于活检样本有限,约 20%经活检证实的 DCIS 病变在手术切除后升级为浸润性导管癌 (IDC)。在避免低估 DCIS 时诊断 IDC 已成为一个紧迫的挑战,因为当前时代不鼓励过度治疗 DCIS。在这项研究中,使用解吸电喷雾电离-质谱 (DESI-MS) 成像分析了 284 个新鲜冷冻乳房样本的代谢谱,包括肿瘤组织和相邻良性组织 (ABT) 和远处周围组织 (DST)。使用 DESI-MS 数据分析代谢组学揭示了纯 DCIS 和 IDC 之间代谢物水平的显著差异,包括小分子抗氧化剂、长链多不饱和脂肪酸 (PUFA) 和磷脂。然而,具有浸润性癌成分的 DCIS 的代谢谱明显向相邻的 IDC 成分靠拢。例如,与纯 DCIS 相比,具有浸润性癌成分的 DCIS 表现出较低水平的抗氧化剂和较高水平的游离脂肪酸。此外,长链 PUFAs 的积累和含有 PUFA 残基的磷脂酰肌醇 (PI) 也可能与 DCIS 的进展有关。这些独特的代谢特征可能为研究 DCIS 的恶性潜能提供有价值的指示。通过将 DESI-MS 数据与机器学习 (ML) 方法相结合,对各种乳房病变进行了区分。重要的是,通过 Lasso 预测模型,成功区分了术后标本中纯 DCIS 成分和有浸润的 DCIS 成分,AUC 值为 0.851。此外,基于 DESI-MS 数据的像素级预测可以实现对整个组织切片中组织特性的自动可视化。总之,对组织切片进行 DESI-MS 成像可以提供有关乳房病变的丰富代谢信息。通过分析组织切片中的空间代谢特征,该技术有可能通过推断 DCIS 病变周围 IDC 成分的存在来促进 DCIS 的准确诊断和个体化治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验