Suppr超能文献

用于高效稳定电催化的拉伸应变多孔钯金属烯

Tensile-Strained Holey Pd Metallene toward Efficient and Stable Electrocatalysis.

作者信息

Zeng Tiantian, Meng Xiaomin, Sun Shiwei, Ling Miao, Zhang Chuanhui, Yuan Weiyong, Cao Dapeng, Niu Mang, Zhang Lian Ying, Li Chang Ming

机构信息

Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.

Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, P. R. China.

出版信息

Small Methods. 2023 Nov;7(11):e2300791. doi: 10.1002/smtd.202300791. Epub 2023 Aug 9.

Abstract

Noble metal-based metallenes are attracting intensive attention in energy catalysis, but it is still very challenging to precisely control the surface structures of metallenes for higher catalytic properties on account of their intrinsic thermodynamic instability. Herein, the synthesis of tensile-strained holey Pd metallene by oxidative etching is reported using hydrogen peroxide, which exhibits highly enhanced catalytic activity and stability in comparison with normal Pd metallene toward both oxygen reduction reaction and formic acid oxidation. The pre-prepared Pd metallene functions as a catalyst to decompose hydrogen peroxide, and the Pd atoms in amorphous regions of Pd metallene are preferentially removed by the introduced hydrogen peroxide during the etching process. The greatly enhanced ORR activity is mainly determined by the strong electrostatic repulsion between intermediate O and the dopant O, which balances the adsorption strength of O on Pd sites, ultimately endowing a weakened adsorption energy of O on TH-Pd metallene. This work creates a facile and economical strategy to precisely shape metallene-based nanoarchitectures with broad applications for energy systems and sensing devices.

摘要

基于贵金属的金属烯在能量催化领域正吸引着广泛关注,但由于其固有的热力学不稳定性,精确控制金属烯的表面结构以获得更高的催化性能仍然极具挑战性。在此,报道了一种通过过氧化氢氧化蚀刻合成拉伸应变多孔钯金属烯的方法,与普通钯金属烯相比,该金属烯在氧还原反应和甲酸氧化反应中均表现出高度增强的催化活性和稳定性。预先制备的钯金属烯作为催化剂分解过氧化氢,在蚀刻过程中,钯金属烯非晶区域中的钯原子优先被引入的过氧化氢去除。氧还原反应活性的大幅增强主要由中间体氧与掺杂氧之间的强静电排斥作用决定,这种排斥作用平衡了氧在钯位点上的吸附强度,最终使氧在拉伸应变钯金属烯上的吸附能减弱。这项工作创造了一种简便且经济的策略,可精确塑造基于金属烯的纳米结构,在能量系统和传感装置中有广泛应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验