Suppr超能文献

月亮包金矿元素砷与植被胁迫的相关关系的光谱特征

Spectral characteristics of the correlation between elemental arsenic and vegetation stress in the Yueliangbao gold mining.

机构信息

School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.

School of Computer Science, China University of Geosciences, Wuhan, 430074, China.

出版信息

Environ Geochem Health. 2023 Nov;45(11):8203-8219. doi: 10.1007/s10653-023-01693-7. Epub 2023 Aug 9.

Abstract

Some soils in the Yueliangbao gold mining area have been contaminated by heavy metals, resulting in variations in vegetation. Hyperspectral remote sensing provides a new perspective for heavy metal inversion in vegetation. In this paper, we collected ground truth spectral data of three dominant vegetation species, Miscanthus floridulus, Equisetum ramosissimum and Eremochloa ciliaris, from contaminated and healthy non-mining areas of the Yueliangbao gold mining region, and determined their heavy metal contents. Firstly, we compared the spectral characteristics of vegetation in the mining and non-mining areas by removing the envelope and derivative transformation. Secondly, we extracted their characteristic identification bands using the Mahalanobis distance and PLS-DA method. Finally, we constructed the inverse model by selecting the vegetation index (such as the PRI, DCNI, MTCI, etc.) related to the characteristic band combined with the heavy metal content. Compared to previous studies, we found that the pollution level in the Yueliangbao gold mining area had greatly reduced, but arsenic metal pollution remained a serious issue. Miscanthus floridulus and Eremochloa ciliaris in the mining area exhibited obvious arsenic stress, with a large "red-edge blue shift" (9 and 6 nm). The extracted characteristic wavebands were around 550 and 680-740 nm wavelengths, and correlation analysis showed significant correlations between vegetation index and arsenic, allowing us to construct a prediction model for arsenic and realize the calculation of heavy metal content using vegetation spectra. This provides a methodological basis for monitoring vegetation pollution in other gold mining areas.

摘要

月亮宝金矿田的一些土壤已受到重金属污染,导致植被发生变化。高光谱遥感为植被重金属反演提供了新的视角。本文在月亮宝金矿田的污染区和非采矿区采集了芒草、节节草和五节芒三种优势植被的地面实测光谱数据,并测定了其重金属含量。首先,通过去除包络线和导数变换,比较了采矿区和非采矿区植被的光谱特征。其次,采用马氏距离和偏最小二乘法判别分析(PLS-DA)方法提取其特征识别波段。最后,选择与特征波段相关的植被指数(如 PRI、DCNI、MTCI 等)与重金属含量相结合,构建反演模型。与以往研究相比,我们发现月亮宝金矿田的污染水平已大大降低,但砷金属污染仍然是一个严重的问题。矿区的芒草和五节芒表现出明显的砷胁迫,“红边蓝移”较大(9nm 和 6-6nm)。提取的特征波段位于 550nm 和 680-740nm 波长附近,相关分析表明植被指数与砷呈显著相关,能够构建砷的预测模型,实现利用植被光谱计算重金属含量。这为监测其他金矿田的植被污染提供了方法学基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验