Suppr超能文献

早期诊断和个性化治疗,注重合成数据建模:医疗保健领域的新型视觉学习方法。

Early diagnosis and personalised treatment focusing on synthetic data modelling: Novel visual learning approach in healthcare.

机构信息

Faculty of Engineering and Informatics, University of Bradford, Bradford, England, United Kingdom.

Faculty of Engineering and Informatics, University of Bradford, Bradford, England, United Kingdom.

出版信息

Comput Biol Med. 2023 Sep;164:107295. doi: 10.1016/j.compbiomed.2023.107295. Epub 2023 Aug 2.

Abstract

The early diagnosis and personalised treatment of diseases are facilitated by machine learning. The quality of data has an impact on diagnosis because medical data are usually sparse, imbalanced, and contain irrelevant attributes, resulting in suboptimal diagnosis. To address the impacts of data challenges, improve resource allocation, and achieve better health outcomes, a novel visual learning approach is proposed. This study contributes to the visual learning approach by determining whether less or more synthetic data are required to improve the quality of a dataset, such as the number of observations and features, according to the intended personalised treatment and early diagnosis. In addition, numerous visualisation experiments are conducted, including using statistical characteristics, cumulative sums, histograms, correlation matrix, root mean square error, and principal component analysis in order to visualise both original and synthetic data to address the data challenges. Real medical datasets for cancer, heart disease, diabetes, cryotherapy and immunotherapy are selected as case studies. As a benchmark and point of classification comparison in terms of such as accuracy, sensitivity, and specificity, several models are implemented such as k-Nearest Neighbours and Random Forest. To simulate algorithm implementation and data, Generative Adversarial Network is used to create and manipulate synthetic data, whilst, Random Forest is implemented to classify the data. An amendable and adaptable system is constructed by combining Generative Adversarial Network and Random Forest models. The system model presents working steps, overview and flowchart. Experiments reveal that the majority of data-enhancement scenarios allow for the application of visual learning in the first stage of data analysis as a novel approach. To achieve meaningful adaptable synergy between appropriate quality data and optimal classification performance while maintaining statistical characteristics, visual learning provides researchers and practitioners with practical human-in-the-loop machine learning visualisation tools. Prior to implementing algorithms, the visual learning approach can be used to actualise early, and personalised diagnosis. For the immunotherapy data, the Random Forest performed best with precision, recall, f-measure, accuracy, sensitivity, and specificity of 81%, 82%, 81%, 88%, 95%, and 60%, as opposed to 91%, 96%, 93%, 93%, 96%, and 73% for synthetic data, respectively. Future studies might examine the optimal strategies to balance the quantity and quality of medical data.

摘要

机器学习有助于疾病的早期诊断和个性化治疗。数据质量对诊断有影响,因为医学数据通常稀疏、不平衡且包含不相关的属性,从而导致诊断效果不佳。为了解决数据挑战的影响,提高资源配置,并实现更好的健康结果,提出了一种新的视觉学习方法。本研究通过确定在个性化治疗和早期诊断的情况下,需要更少还是更多的合成数据来提高数据集的质量,例如观察值和特征的数量,从而为视觉学习方法做出贡献。此外,进行了大量的可视化实验,包括使用统计特征、累积和、直方图、相关矩阵、均方根误差和主成分分析来可视化原始数据和合成数据,以解决数据挑战。选择癌症、心脏病、糖尿病、冷冻疗法和免疫疗法的真实医疗数据集作为案例研究。作为准确性、敏感性和特异性等方面的基准和分类比较点,实现了 k-最近邻和随机森林等几种模型。为了模拟算法的实现和数据,使用生成对抗网络来创建和操纵合成数据,同时,使用随机森林来对数据进行分类。通过结合生成对抗网络和随机森林模型构建了一个可调整和适应的系统。系统模型展示了工作步骤、概述和流程图。实验表明,在数据增强场景中,大多数情况下可以将视觉学习应用于数据分析的第一阶段,作为一种新方法。为了在保持统计特征的同时,在适当质量的数据和最佳分类性能之间实现有意义的自适应协同作用,视觉学习为研究人员和从业者提供了实用的人机交互机器学习可视化工具。在实施算法之前,可以使用视觉学习方法进行早期和个性化诊断。对于免疫疗法数据,随机森林的精度、召回率、F1 分数、准确性、敏感性和特异性分别为 81%、82%、81%、88%、95%和 60%,而合成数据的分别为 91%、96%、93%、93%、96%和 73%。未来的研究可能会研究平衡医疗数据数量和质量的最佳策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验