Suppr超能文献

Alexnet 模型在膝关节骨关节炎分类中的性能分析。

Performance analysis of Alexnet for Classification of Knee Osteoarthritis.

机构信息

Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, Tamil Nadu, India

出版信息

Curr Med Imaging. 2024;20:e090823219574. doi: 10.2174/1573405620666230809105544.

Abstract

BACKGROUND

In recent years, automated grading of knee osteoarthritis (KOA) has focused on determining disease progression. Clinical examinations and radiographic image review are necessary for diagnosis. Timely and accurate diagnosis, along with medical care, can slow down KOA progression. X-rays and MRI are crucial diagnostic tools. KOA diagnosis traditionally relies on radiologists' and clinicians' experience. However, the rapid development of deep learning technology (AI) offers promising solutions for medical applications.

OBJECTIVE

The objective of this study was to review and summarize various methods proposed by researchers for the automated grading of KOA. Additionally, this study aimed to evaluate the performance of the AlexNet model in classifying the severity of KOA. The performance of the AlexNet model has been compared to that of other models, and the results have been assessed.

METHOD

A comprehensive review of existing research on automated grading of KOA has been conducted. Various methods proposed by different researchers have been examined and summarized. The AlexNet model has been employed for classifying the severity of KOA, and its performance has been evaluated. A comparative analysis has been carried out to compare the performance of the AlexNet model with that of other models. The results obtained from the evaluation have been assessed to determine the effectiveness of the AlexNet model in the automated grading of KOA.

RESULTS

The results of the study indicate that the AlexNet model demonstrates promising performance in classifying the severity of KOA. Comparative analysis reveals that the AlexNet model outperforms other models in terms of accuracy and efficiency. The evaluation of the model's performance provides valuable insights into the effectiveness of deep learning techniques for automated grading of KOA.

CONCLUSION

This study highlights the significance of automated grading in the diagnosis and management of knee osteoarthritis. The utilization of deep learning technology, particularly the AlexNet model, shows promise in accurately classifying the severity of KOA. The findings suggest that automated grading methods can serve as valuable tools for healthcare professionals in assessing the progression of KOA and providing appropriate medical care. Further research and development in this area can contribute to enhancing the efficiency and accuracy of automated grading systems for KOA.

摘要

背景

近年来,膝关节骨关节炎(KOA)的自动分级主要集中在确定疾病进展上。诊断需要临床检查和放射图像评估。及时准确的诊断和医疗保健可以减缓 KOA 的进展。X 射线和 MRI 是至关重要的诊断工具。KOA 的传统诊断依赖于放射科医生和临床医生的经验。然而,深度学习技术(AI)的快速发展为医疗应用提供了有希望的解决方案。

目的

本研究旨在回顾和总结研究人员提出的用于 KOA 自动分级的各种方法。此外,本研究旨在评估 AlexNet 模型在分类 KOA 严重程度方面的性能。比较了 AlexNet 模型与其他模型的性能,并对结果进行了评估。

方法

对现有的 KOA 自动分级研究进行了全面回顾。检查并总结了不同研究人员提出的各种方法。使用 AlexNet 模型对 KOA 的严重程度进行分类,并对其性能进行评估。进行了对比分析,以比较 AlexNet 模型与其他模型的性能。评估结果用于评估 AlexNet 模型在 KOA 自动分级中的有效性。

结果

研究结果表明,AlexNet 模型在分类 KOA 严重程度方面表现出良好的性能。对比分析表明,AlexNet 模型在准确性和效率方面优于其他模型。对模型性能的评估提供了有关深度学习技术在 KOA 自动分级中的有效性的有价值的见解。

结论

本研究强调了自动分级在膝关节骨关节炎的诊断和管理中的重要性。深度学习技术的应用,特别是 AlexNet 模型,在准确分类 KOA 严重程度方面显示出了潜力。研究结果表明,自动分级方法可以作为医疗保健专业人员评估 KOA 进展和提供适当医疗护理的有价值的工具。该领域的进一步研究和开发可以有助于提高 KOA 自动分级系统的效率和准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验