van Langevelde Phebe H, Engbers Silène, Buda Francesco, Hetterscheid Dennis G H
Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands.
ACS Catal. 2023 Jul 18;13(15):10094-10103. doi: 10.1021/acscatal.3c01989. eCollection 2023 Aug 4.
Mononuclear copper complexes relevant to the active site of copper nitrite reductases (CuNiRs) are known to be catalytically active for the reduction of nitrite. Yet, their catalytic mechanism has thus far not been resolved. Here, we provide a complete description of the electrocatalytic nitrite reduction mechanism of a bio-inspired CuNiR catalyst Cu(tmpa) (tmpa = tris(2-pyridylmethyl)amine) in aqueous solution. Through a combination of electrochemical studies, reaction kinetics, and density functional theory (DFT) computations, we show that the protonation steps take place in a stepwise manner and are decoupled from electron transfer. The rate-determining step is a general acid-catalyzed protonation of a copper-ligated nitrous acid (HNO) species. In view of the growing urge to convert nitrogen-containing compounds, this work provides principal reaction parameters for efficient electrochemical nitrite reduction. This contributes to the investigation and development of nitrite reduction catalysts, which is crucial to restore the biogeochemical nitrogen cycle.
已知与亚硝酸铜还原酶(CuNiRs)活性位点相关的单核铜配合物对亚硝酸盐的还原具有催化活性。然而,其催化机制至今尚未得到解析。在此,我们完整描述了一种受生物启发的CuNiR催化剂Cu(tmpa)(tmpa = 三(2 - 吡啶甲基)胺)在水溶液中的电催化亚硝酸盐还原机制。通过电化学研究、反应动力学和密度泛函理论(DFT)计算相结合,我们表明质子化步骤以逐步方式进行,并且与电子转移解耦。速率决定步骤是铜配位的亚硝酸(HNO)物种的一般酸催化质子化。鉴于转化含氮化合物的需求日益增长,这项工作为高效电化学亚硝酸盐还原提供了主要反应参数。这有助于亚硝酸盐还原催化剂的研究和开发,这对于恢复生物地球化学氮循环至关重要。