Suppr超能文献

基于深度学习从人诱导多能干细胞分化出的SHOX2/HCN4双阳性细胞中识别窦房结样起搏细胞。

Deep learning-based identification of sinoatrial node-like pacemaker cells from SHOX2/HCN4 double-positive cells differentiated from human iPS cells.

作者信息

Wakimizu Takayuki, Naito Junpei, Ishida Manabu, Kurata Yasutaka, Tsuneto Motokazu, Shirayoshi Yasuaki, Hisatome Ichiro

机构信息

Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics Tottori University Graduate School of Medical Science Yonago Japan.

ERISA Corporation Matsue Japan.

出版信息

J Arrhythm. 2023 Jun 16;39(4):664-668. doi: 10.1002/joa3.12883. eCollection 2023 Aug.

Abstract

BACKGROUND

Cardiomyocytes derived from human iPS cells (hiPSCs) include cells showing SAN- and non-SAN-type spontaneous APs.

OBJECTIVES

To examine whether the deep learning technology could identify hiPSC-derived SAN-like cells showing SAN-type-APs by their shape.

METHODS

We acquired phase-contrast images for hiPSC-derived SHOX2/HCN4 double-positive SAN-like and non-SAN-like cells and made a VGG16-based CNN model to classify an input image as SAN-like or non-SAN-like cell, compared to human discriminability.

RESULTS

All parameter values such as accuracy, recall, specificity, and precision obtained from the trained CNN model were higher than those of human classification.

CONCLUSIONS

Deep learning technology could identify hiPSC-derived SAN-like cells with considerable accuracy.

摘要

背景

源自人诱导多能干细胞(hiPSC)的心肌细胞包括显示窦房结型和非窦房结型自发动作电位的细胞。

目的

研究深度学习技术能否通过形态识别源自hiPSC的显示窦房结型动作电位的类窦房结样细胞。

方法

我们获取了源自hiPSC的SHOX2/HCN4双阳性类窦房结样细胞和非类窦房结样细胞的相差图像,并制作了基于VGG16的卷积神经网络(CNN)模型,以将输入图像分类为类窦房结样或非类窦房结样细胞,并与人类辨别能力进行比较。

结果

从训练后的CNN模型获得的所有参数值,如准确率、召回率、特异性和精确率,均高于人类分类的参数值。

结论

深度学习技术能够以相当高的准确率识别源自hiPSC的类窦房结样细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/112d/10407170/2d418282377b/JOA3-39-664-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验