Suppr超能文献

一种基于聚(偏二氟乙烯-三氟乙烯)/氧化锌/氧化石墨烯的可穿戴纳米级心音传感器及其在心脏病检测中的应用。

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection.

作者信息

Luo Yi, Liu Jian, Zhang Jiachang, Xiao Yu, Wu Ying, Zhao Zhidong

机构信息

School of Electronics and Information Engineering, Hangzhou DIANZI University, Hangzhou 310018, China.

School of Communication Engineering, Hangzhou DIANZI University, Hangzhou 310018, China.

出版信息

Beilstein J Nanotechnol. 2023 Jul 31;14:819-833. doi: 10.3762/bjnano.14.67. eCollection 2023.

Abstract

This paper describes a method for preparing flexible composite piezoelectric nanofilms of P(VDF-TrFE)/ZnO/graphene using a high-voltage electrospinning method. Composition and β-phase content of the piezoelectric composite films were analyzed using X-ray diffraction. The morphology of the composite film fibers was observed through scanning electron microscopy. Finally, the P(VDF-TrFE)/ZnO/graphene composite film was encapsulated in a sandwich-structure heart sound sensor, and a visual heart sound acquisition and classification system was designed using LabVIEW. A heart sound classification model was trained based on a fine -nearest neighbor classification algorithm to predict whether the collected heart sounds are normal or abnormal. The heart sound detection system designed in this paper can collect heart sound signals in real time and predict whether the heart sounds are normal or abnormal, providing a new solution for the diagnosis of heart diseases.

摘要

本文描述了一种使用高压静电纺丝法制备P(VDF-TrFE)/ZnO/石墨烯柔性复合压电纳米薄膜的方法。利用X射线衍射分析了压电复合薄膜的组成和β相含量。通过扫描电子显微镜观察复合薄膜纤维的形态。最后,将P(VDF-TrFE)/ZnO/石墨烯复合薄膜封装在夹心结构的心音传感器中,并使用LabVIEW设计了一个可视化的心音采集和分类系统。基于精细最近邻分类算法训练了心音分类模型,以预测采集到的心音是正常还是异常。本文设计的心音检测系统能够实时采集心音信号并预测心音是否正常,为心脏病诊断提供了一种新的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd50/10407783/a70f854a5045/Beilstein_J_Nanotechnol-14-819-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验